基于电路理论的南京城市绿色基础设施格局优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure optimization of circuit theory-based green infrastructure in Nanjing,China
  • 作者:刘佳 ; 尹海伟 ; 孔繁花 ; 李沐寒
  • 英文作者:LIU Jia;YIN Haiwei;KONG Fanhua;LI Muhan;School of Architecture and Urban Planning,Nanjing University;International Institute for Earth System Sciences,Nanjing University;
  • 关键词:绿色基础设施 ; 景观连通性 ; 电路理论 ; 障碍点识别
  • 英文关键词:green infrastructure;;landscape connectivity;;circuit theory;;barrier mapper
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:南京大学建筑与城市规划学院;南京大学国际地球系统科学研究所;
  • 出版日期:2018-06-23
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(51478217,31670470)
  • 语种:中文;
  • 页:STXB201812026
  • 页数:10
  • CN:12
  • ISSN:11-2031/Q
  • 分类号:272-281
摘要
城市绿色基础设施的连通性与格局优化能显著提升城市的生物多样性和可持续发展能力,对维持城市生态系统的健康与稳定具有重要意义。基于电路理论构建了南京市主城区绿色基础设施景观格局,根据电流密度分析斑块、廊道重要性,并借助移动窗口搜索法识别障碍点,提出南京市景观格局优化策略。研究结果表明:(1)南京主城区景观破碎化程度较高,40%的生境斑块(约为28.18 km2)对连通性的贡献较低,南部重要廊道的数量最多,局部簇团成网,网络结构较为复杂,其次为中部,且河流廊道(秦淮河)是其主要廊道类型,北部廊道数量最少,斑块多呈孤岛分布;(2)研究区共有155处障碍点,其中84.5%面积小于5hm2,可见主城区景观连通性仍有较大的提升空间。研究丰富了城市绿色基础设施景观格局的构建方法,对南京主城区绿色基础设施的连通性与格局优化具有一定的实践指导意义与参考价值。
        The connectivity of urban green infrastructure(UGI) can significantly improve the biodiversity and sustainable development ability of cities,which is of great significance to maintaining the health and stability of urban ecosystems.In the present study,we used circuit theory to map the landscape connectivity of UGI in the main urban area of Nanjing and identify the important patches and corridors according to current density,and then used a search window to detect barriers and to develop a landscape connectivity optimization strategy for Nanjing.1) Habitat fragmentation in the main urban area of Nanjing was significant.The total area of the patches was about 70.45 km2,and 40% of patches area had a low contribution to connectivity.The southern part of the study area exhibited the best landscape connectivity,followed by the middle and northern parts.In the south,numerous corridors clustered into net structure,and the network structure is complex.In the middle of the study area,the Qinhuai River mainly formed a circular corridor.Relatively few corridors were observed in the northern part of the study area,and the patches were isolated.2) There were 155 barriers in the study area,and 84.5% of those barriers were > 5 hm2,so the landscape connectivity in the main urban area of Nanjing can still improve greatly.Although many methods have been developed and used for predicting connectivity,circuit theory has rarely been used to map connectivity in urban areas.The present study demonstrates how circuit theory can be used to map connectivity in complex landscape and to identify important habitat patches and movement corridors for conservation planning,which is anadvance in mapping the landscape connectivity of UGI.The circuit theory incorporates all possible pathways and combines structural and functional corridors,which improves corridor redundancy and provides an efficient and cost-effective tool for mapping UGI landscape connectivity.The results of this study provided an important reference for Nanjing UGI networks.
引文
[1]于亚平,尹海伟,孔繁花,王晶晶,徐文彬.基于MSPA的南京市绿色基础设施网络格局时空变化分析.生态学杂志,2016,35(6):1608-1616.
    [2]张宇,李丽,吴巩胜,周跃,覃顺萍,王小明.基于生境斑块的滇金丝猴景观连接度分析.生态学报,2016,36(1):51-58.
    [3]陈春娣,贾振毅,吴胜军,童笑笑,周文佐,陈若漪,张超林.基于文献计量法的中国景观连接度应用研究进展.生态学报,2017,37(10):3243-3255.
    [4]Koen E L,Bowman J,Sadowski C,Walpole A A.Landscape connectivity for wildlife:development and validation of multispecies linkage maps.Methods in Ecology and Evolution,2014,5(7):626-633.
    [5]杰克·埃亨,秦越,刘海龙.从安全防御到安全无忧:新城市世界的可持续性和韧性.国际城市规划,2015,30(2):4-7.
    [6]许峰,尹海伟,孔繁花,徐建刚.基于MSPA与最小路径方法的巴中西部新城生态网络构建.生态学报,2015,35(19):6425-6434.
    [7]Braaker S,Moretti M,Boesch R,Ghazoul J,Obrist M K,Bontadina F.Assessing habitat connectivity for ground-dwelling animals in an urban environment.Ecological Applications,2014,24(7):1583-1595.
    [8]裴丹.绿色基础设施构建方法研究述评.城市规划,2012,36(5):84-90.
    [9]俞孔坚,李博,李迪华.自然与文化遗产区域保护的生态基础设施途径——以福建武夷山为例.城市规划,2008,32(10):88-91,96-96.
    [10]李博.绿色基础设施与城市蔓延控制.城市问题,2009,(1):86-90.
    [11]Kong F H,Yin H W,Nakagoshi N,Zong Y G.Urban green space network development for biodiversity conservation:identification based on graph theory and gravity modeling.Landscape and Urban Planning,2010,95(1/2):16-27.
    [12]Zetterberg A,M9rtberg U M,Balfors B.Making graph theory operational for landscape ecological assessments,planning,and design.Landscape and Urban Planning,2010,95(4):181-191.
    [13]尹海伟,孔繁花,祈毅,王红扬,周艳妮,秦正茂.湖南省城市群生态网络构建与优化.生态学报,2011,31(10):2863-2874.
    [14]Hong S H,Han B H,Choi S H,Sung C Y,Lee K J.Planning an ecological network using the predicted movement paths of urban birds.Landscape and Ecological Engineering,2013,9(1):165-174.
    [15]青菁,胥池,杨彪,杨志松,齐敦武,杨旭煜,古晓东,戴强.小相岭山系大熊猫廊道规划.生态学报,2016,36(4):1125-1133.
    [16]徐文彬,尹海伟,孔繁花.基于生态安全格局的南京都市区生态控制边界划定.生态学报,2017,37(12):4019-4028.
    [17]Soille P,Vogt P.Morphological segmentation of binary patterns.Pattern Recognition Letters,2009,30(4):456-459.
    [18]Wickham J D,Riitters K H,Wade T G,Vogt P.A national assessment of green infrastructure and change for the conterminous United States using morphological image processing.Landscape and Urban Planning,2010,94(3/4):186-195.
    [19]Saura S,Vogt P,Velázquez J,Hernando A,Tejera R.Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses.Forest Ecology and Management,2011,262(2):150-160.
    [20]Koen E L,Bowman J,Walpole A A.The effect of cost surface parameterization on landscape resistance estimates.Molecular Ecology Resources,2012,12(4):686-696.
    [21]Beier P,Majka D R,Newell S L.Uncertainty analysis of least-cost modeling for designing wildlife linkages.Ecological Applications,2009,19(8):2067-2077.
    [22]Cushman S A,Landguth E L,Flather C H.Evaluating population connectivity for species of conservation concern in the American Great Plains.Biodiversity and Conservation,2013,22(11):2583-2605.
    [23]Jongman R H G,Külvik M,Kristiansen I.European ecological networks and greenways.Landscape and Urban Planning,2004,68(2/3):305-319.
    [24]Battisti C.Ecological network planning-from paradigms to design and back:a cautionary note.Journal of Land Use Science,2013,8(2):215-223.
    [25]李慧,李丽,吴巩胜,周跃,李雯雯,梅泽文.基于电路理论的滇金丝猴生境景观连通性分析.生态学报,2018,38(6):2221-2228
    [26]Taylor P D,Fahrig L,Henein K,Merriam G.Connectivity is a vital element of landscape structure.Oikos,1993,68(3):571-573.
    [27]O'Grady J J,Brook B W,Reed D H,Ballou J D,Tonkyn D W,Frankham R.Realistic levels of inbreeding depression strongly affect extinction risk in wild populations.Biological Conservation,2006,133(1):42-51.
    [28]Beier P,Majka D R,Spencer W D.Forks in the road:choices in procedures for designing wildland linkages.Conservation Biology,2008,22(4):836-851.
    [29]McRae B H.Isolation by resistance.Evolution,2006,60(8):1551-1561.
    [30]McRae B H,Beier P.Circuit theory predicts gene flow in plant and animal populations.Proceedings of the National Academy of Sciences of the United States of America,2007,104(50):19885-19890.
    [31]McRae B H,Dickson B G,Keitt T H,Shah V B.Using circuit theory to model connectivity in ecology,evolution,and conservation.Ecology,2008,89(10):2712-2724.
    [32]Koen E L,Garroway C J,Wilson P J,Bowman J.The effect of map boundary on estimates of landscape resistance to animal movement.PLo S One,2010,5(7):e11785.
    [33]Leonard P B,Duffy E B,Baldwin R F,McRae B H,Shah V B,Mohapatra T K.GFLOW:software for modelling circuit theory‐based connectivity at any scale.Methods in Ecology and Evolution,2017,8:519-526.
    [34]Mc Clure M L,Hansen A J,Inman R M.Connecting models to movements:testing connectivity model predictions against empirical migration and dispersal data.Landscape Ecology,2016,31(7):1419-1432.
    [35]Merrick M J,Koprowski J L.Circuit theory to estimate natal dispersal routes and functional landscape connectivity for an endangered small mammal.Landscape Ecology,2017,32(6):1163-1179.
    [36]王放.栖息地适宜度与连通性:秦岭湑水河大熊猫走廊带案例研究[D].北京:北京大学,2012.
    [37]Jiang G S,Qi J Z,Wang G M,Shi Q H,Darman Y,Hebblewhite M,Miquelle D G,Li Z L,Zhang X,Gu J Y,Chang Y D,Zhang M H,Ma J Z.New hope for the survival of the Amur leopard in China.Scientific Reports,2015,5:15475.
    [38]Doyle P G,Snell J L.Random Walks and Electric Networks.Washington,DC:Mathematical Association of America,1984.174.
    [39]McRae B H,Shah V B,Mohapatra T K.2013.Circuitscape 4 User Guide.The Nature Conservancy.[2018-01-20].http://docs.circuitscape.org/circuitscape_4_0_user_guide.html?&id=gsite.
    [40]孔繁花,尹海伟.济南城市绿地生态网络构建.生态学报,2008,28(4):1711-1719.
    [41]Newman M E J,Girvan M.Finding and evaluating community structure in networks.Physical Review E,2004,69(2):026113.
    [42]Carroll C,McRae B H,Brookes A.Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America.Conservation Biology,2012,26(1):78-87.
    [43]Bishop-Taylor R,Tulbure M G,Broich M.Surface water network structure,landscape resistance to movement and flooding vital for maintaining ecological connectivity across Australia's largest river basin.Landscape Ecology,2015,30(10):2045-2065.
    [44]Dickson B G,Albano C M,McRae B H,Anderson J J,Theobald D M,Zachmann L J,Sisk T D,Dombeck M P.Informing Strategic Efforts to Expand and Connect Protected Areas Using a Model of Ecological Flow,with Application to the Western United States.Conservation Letters,2017,10(5):564-571.
    [45]McRae B H,Hall S A,Beier P,Theobald D M.Where to restore ecological connectivity?Detecting barriers and quantifying restoration benefits.PLo S One,2012,7(12):e52604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700