基于变参数PI控制的双馈风电机组频率控制策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control strategy of high penetrance wind power out of frequency regulation based on variable parameter PI control
  • 作者:张俊武 ; 王德林 ; 刘柳 ; 潘志豪
  • 英文作者:ZHANG Jun-wu;WANG De-lin;LIU Liu;PAN Zhi-hao;School of Electrical Engineering, Southwest Jiaotong University;
  • 关键词:DFIG ; 转速恢复 ; 系统频率二次跌落 ; 变参数PI控制 ; 优化分组
  • 英文关键词:DFIG;;rotor speed recovery;;two drops of system frequency;;variable parameter PI control;;grouping optimization
  • 中文刊名:DGDN
  • 英文刊名:Advanced Technology of Electrical Engineering and Energy
  • 机构:西南交通大学电气工程学院;
  • 出版日期:2017-12-22 09:48
  • 出版单位:电工电能新技术
  • 年:2018
  • 期:v.37;No.186
  • 基金:国家自然科学基金项目(51477143)
  • 语种:中文;
  • 页:DGDN201812003
  • 页数:9
  • CN:12
  • ISSN:11-2283/TM
  • 分类号:12-20
摘要
双馈风电机组(DFIG)在减载运行模式下,当系统频率发生跌落时,通过虚拟惯性控制向系统提供短时的功率支撑减缓频率跌落,但随后DFIG转子转速需要恢复,此过程因消耗有功功率可能会引起频率的二次跌落,影响系统的频率稳定性。针对该问题,首先研究单台风机参与调频情况下,采用基于变参数PI控制的转速恢复环节,延缓转速恢复时间,即减缓从电网中的有功吸收,减小系统频率波动,避免DFIG直接退出时引起系统频率的二次跌落。多机情况下,若风电场各风速区间机组数量均匀分布,提出基于变参数PI控制的延时恢复策略,缓解系统频率的骤跌;若风电场各风速区间机组数量分布不均匀,进一步提出了优化分组策略,避免不均匀风电场采用延时转速恢复时仍可能出现的频率骤跌。
        When double-fed induction generator(DFIG) based on wind turbine is running on load reduction operating mode, it can only provide short-term support through additional control of virtual inertia. Then the speed recovery process will start, which will cause two drops of system frequency because it will absorb the active power from the power grid, and will influence the frequency stability of the system. In order to solve this problem, this paper first studies the frequency modulation of a single DFIG, using the variable parameter PI control speed recovery to prolong the speed recovery time. This will slow down the active power absorption from the power grid and reduce the frequency fluctuation of the system, so as to avoid second drop of system frequency caused by direct exit mode. For well-distributed wind farm, this paper proposes a delay recovery strategy based on variable parameter PI control, which can effectively alleviate the abrupt drop of system frequency. But it still has obvious frequency drop when in the situation of uneven distribution of wind turbines, and this paper proposes a rotor speed delay recovery strategy drop based on the variable parameter PI control strategy, which can effectively avoid the uneven frequency drop.
引文
[1] 谷俊和, 刘建平, 江浩(Gu Junhe, Liu Jianping, Jiang Hao). 风电接入对系统频率影响及风电调频技术综述(Literature review on the influence of wind power on system frequency and frequency regulation technologies of wind power)[J]. 现代电力(Modern Electric Power), 2015, 32(1): 46-51.
    [2] 刘巨, 姚伟, 文劲宇, 等(Liu Ju, Yao Wei, Wen Jinyu, et al.). 大规模风电参与系统频率调整的技术展望(Prospect of technology for large-scale wind farm participating into power grid frequency regulation)[J]. 电网技术(Power System Technology), 2014, 38(3): 638-646.
    [3] 娄尧林, 叶杭冶, 蔡旭, 等(Lou Yaolin, Ye Hangye, Cai Xu, et al.). 变速变桨风电机组阵风控制策略(Extreme gust control strategy for variable speed variable pitch wind turbine)[J]. 电力自动化设备(Electric Power Automation Equipment), 2016, 36(12): 24-28.
    [4] 李生虎, 朱国伟(Li Shenghu, Zhu Guowei). 基于有功备用的风电机组一次调频能力及调频效果分析(Capability and effect of primary frequency regulation by wind turbine generators with active power reserve)[J]. 电工电能新技术(Advanced Technology of Electrical Engineering and Energy), 2015, 34(10): 28-33.
    [5] 徐超,卢锦玲,张洁,等(Xu Chao,Lu Jinling,Zhang Jie, et al.). 提高双馈风力发电机并网系统暂态稳定性的控制策略(Control strategy for transient stability improvement of doubly-fed wind power generation system)[J]. 电工电能新技术(Advanced Technology of Electrical Engineering and Energy), 2015, 34(6): 45-51.
    [6] 赵晶晶,胡晓光,吕雪,等(Zhao Jingjing,Hu Xiaoguang,Lv Xue, et al.). 含STATCOM的双馈电机风电场无功电压协调控制策略(Research on coordination control strategy of DFIG wind farm with Crowbar circuit)[J]. 电工电能新技术(Advanced Technology of Electrical Engineering and Energy), 2016, 35(10): 17-22.
    [7] 李芸,王德林(Li Yun,Wang Delin). 大型风电场的 等值模型及其改进措施(Equivalent model and improvement research of large wind power station)[J]. 电 工电能新技术(Advanced Technology of Electrical Engineering and Energy), 2014, 33 (7): 11-17.
    [8] 丁磊, 尹善耀, 王同晓, 等(Ding Lei, Yin Shanyao, Wang Tongxiao, et al.). 考虑惯性调频的双馈风电机组主动转速保护控制策略(Active rotor speed protection strategy for DFIG-based wind turbines with inertia control)[J]. 电力系统自动化(Automation of Electric Power Systems), 2015, 39(24): 29-34.
    [9] Mauricio J M, Marano A, Gomez-Exposito A, et al. Frequency regulation contribution through variable-speed wind energy conversion systems[J]. IEEE Transactions on Power Systems, 2009, 24(1): 173-180.
    [10] 刘文霞,吴方权(Liu Wenxia,Wu Fangquan). 风场群接入系统的静态电压稳定分析(Static voltage stability analysis of power systems with wind farm groups)[J]. 电工电能新技术(Advanced Technology of Electrical Engineering and Energy), 2014, 33(6): 13-17.
    [11] 刘彬彬, 杨健维, 廖凯, 等(Liu Binbin, Yang Jianwei, Liao Kai, et al.). 基于转子动能控制的双馈风电机组频率控制改进方案(Improved frequency control strategy for DFIG-based wind turbines based on rotor kinetic energy control)[J]. 电力系统自动化(Automation of Electric Power Systems), 2016, 40(16): 17-22.
    [12] Liu Feng, Liu Zhangwei, Mei Shengwei, et al.ESO-based inertia emulation and rotor speed recovery for DFIGs[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1209-1219.
    [13] 田新首, 王伟胜, 迟永宁, 等(Tian Xinshou, Wang Weisheng, Chi Yongning, et al.). 基于双馈风电机组有效储能的变参数虚拟惯量控制(Variable parameter virtual inertia control based on effective energy storage of DFIG-based wind turbines)[J]. 电力系统自动化(Automation of Electric Power Systems), 2015, 39(5): 20-26, 33.
    [14] Bao W, Ding L, Yin S, et al. Active rotor speed protection for DFIG synthetic inertia control[A]. Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion[C]. 2016. 1-5.
    [15] 何成明, 王洪涛, 孙华东, 等(He Chengming, Wang Hongtao, Sun Donghua, et al.). 变速风电机组调频特性分析及风电场时序协同控制策略(Analysis on frequency control characteristics of variable speed wind turbines and coordinated frequency control strategy of wind farm)[J]. 电力系统自动化(Automation of Electric Power Systems), 2013, 37(9): 1-6, 59.
    [16] Teninge A, Jecu C, Roye D, et al. Contribution to frequency control through wind turbine inertial energy storage[J]. IET Renewable Power Generation, 2009, 3(3): 358-370.
    [17] 李本新, 韩学山, 刘国静, 等(Li Benxin,Han Xueshan, Liu Guojing,et al.). 风电与储能系统互补下的火电机组组合(Thermal unit commitment with complementary wind power and energy storage system)[J]. 电力自动化设备(Electric Power Automation Equipment), 2017, 37(7): 32-37, 54.
    [18] 丁磊, 尹善耀, 王同晓, 等(Ding Lei, Yin Shanyao, Wang Tongxiao, et al.). 结合超速备用和模拟惯性的双馈风电机组频率控制策略(Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control)[J]. 电网技术(Power System Technology), 2015, 39(9): 2385-2391.
    [19] 曹军, 王虹富, 邱家驹(Cao Jun, Wang Hongfu, Qiu Jiaju). 变速恒频双馈风电机组频率控制策略(Frequency control strategy of variable-speed constant-frequency doubly-fed induction generator wind turbine)[J]. 电力系统自动化(Automation of Electric Power Systems), 2009, 33(13): 78-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700