用户名: 密码: 验证码:
03Cr18NiMoN节镍双相不锈钢的热变形行为及热加工图
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hot deformation behavior and hot working drawing of 03Cr18NiMoN low-nickel duplex stainless steel
  • 作者:李凯强 ; 杨银辉 ; 钱昊 ; 曹建春
  • 英文作者:LI Kai-qiang;YANG Yin-hui;QIAN Hao;CAO Jian-chun;School of Materials Science and Engineering, Kunming University of Science and Technology;
  • 关键词:双相不锈钢 ; 流变曲线 ; 本构方程 ; 热加工图
  • 英文关键词:duplex stainless steel;;flow stress curve;;constitutive equation;;hot working map
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:昆明理工大学材料科学与工程学院;
  • 出版日期:2019-06-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金资助项目(51461024)
  • 语种:中文;
  • 页:IRON201906016
  • 页数:10
  • CN:06
  • ISSN:11-2133/TF
  • 分类号:61-70
摘要
为了探究03Cr18NiMoN节镍双相不锈钢高温轧制变形机制和组织演变规律,利用Gleeble-3800热模拟试验机在变形温度为850~1 150℃,应变速率为0.01~10 s~(-1),变形量为50%条件下对其进行高温压缩研究。流变应力曲线在950~1 150℃的较高变形温度和0.01~0.1 s~(-1)低应变速率条件下呈现出明显动态再结晶特征。变形初期,试验钢的加工硬化率随变形温度的降低和应变速率的升高而增加,不利于动态再结晶软化。组织分析表明,随变形温度升高至1 050℃和应变速率降低,奥氏体动态再结晶更加充分,晶粒细化程度明显提高,而1 150℃高变形温度使奥氏体再结晶晶粒粗化。在950℃、0.01~1 s~(-1)的变形条件下,铁素体动态回复逐渐加强。热变形激活能Q=549.7 kJ/mol,高于2 205双相不锈钢(451 kJ/mol),表观应力指数n=6.079,表明其变形机制主要以体扩散引起的位错低温攀移为主。热加工图分析表明,失稳区域随应变量增加逐渐增大,结合流变应力曲线和显微组织分析,确定最佳加工区域为950~1 050℃的变形温度和0.01~0.018 s~(-1)的应变速率,且功率耗散因子处于较高(0.36~0.50)水平。此外,基于Z参数建立了试验钢的峰值流变应力本构方程。
        In order to investigate high-temperature rolling deformation mechanism and microstructure evolution of 03 Cr18 NiMoN low-nickel duplex stainless steel(DSS), the hot compression tests were conducted using the Gleeble-3800 thermal-mechanical simulator at temperature range of 850-1 150 ℃, strain rate of 0.01-10 s~(-1) and reduction ratio of 50%. Obvious dynamic recrystallization(DRX) was exhibited in the flow curves under high-deformation temperature of 950-1 150 ℃ and low strain rate of 0.01-0.1 s~(-1). In the early deformation stage, the work hardening rate of tested steel increases with the decrease in deformation temperature and the increase in strain rate, which is dentrimental to dynamic recrystallization softening. The microstructure analysis showed that with the deformation temperature incresing to 1 050 ℃ and the strain rate decreasing, DRX became more complete, which promoted the grain refinement of austenite, while the deformation at higher temperature of 1 150 ℃ made the recrystallized austenite grains coarsen. Under the deformation conditions of 950 ℃ and 0.01-1 s~(-1), the effect of ferrite DRV was gradually strengthened. The apparent activation energy of hot deformation Q was calculated as 549.7 kJ/mol, higher than that of 2205 DSS(451 kJ/mol), and the apparent stress exponent was calculated as 6.079, indicating that the deformation mechanism is mainly controlled by the low-temperature dislocation climbing caused by bulk diffusion. As the hot processing maps shows, the instable region gradually increases with the increase in strain. Combined stress-strain curves and microstructure, the optimum processing conditions are at deformation temperature of 950-1 050 ℃ and strain rate of 0.01-0.018 s~(-1) with high power dissipation coefficient(0.36-0.50). In addition, the constitutive equation of peak flow stress for tested steel based on Z parameter was established.
引文
[1] 陆世英.不锈钢概论[M].北京:化学工业出版社,2013.(Lu S Y.Introduction to Stainless Steel[M].Beijing:Chemical Industry Press,2013.)
    [2] 许适群,王菁辉.双相不锈钢性能的探讨[J].石油化工腐蚀与防护,2006(5):21.(Xu S Q,Wang J H.Discussion on the properties of duplex stainless steel[J].Corrosion and Protection in Petrochemical Industry,2006(5):21.)
    [3] 姜放,曹晓燕,施岱艳,等.双相不锈钢在油气工业中的工程应用[J].天然气与石油,2011,29(3):58.(Jiang F,Cao X Y,Shi D Y,et al.Application of duplex stainless steel in oil and gas industry[J].Natural Gas and Oil,2011,29(3):58.)
    [4] 汪冬兵.双相不锈钢在尿素高压设备中的使用[J].大氮肥,2013,36(1):18.(Wang D B.The application of duplex stainless steels to urea hp equipment[J].Large Scale Nitrogenous Fertilizer Industry,2013,36(1):18.)
    [5] 吴玖.双相不锈钢[M].北京:冶金工业出版社,1999.(Wu J.Duplex Stainless Steel [M].Beijing:Metallurgical Industry Press,1999.)
    [6] Balancin O,Hoffmann W A M,Jonas J J.Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures[J].Metallurgical and Materials Transactions,2000,31A(5):1353.
    [7] Yang Y,Yan B.The microstructure and flow behavior of 2205 duplex stainless steels during high temperature compression deformation[J].Materials Science and Engineering,2013,579A:194.
    [8] 王晓峰,陈伟庆,毕洪运,等.影响双相不锈钢热塑性的诸因素讨论[J].上海金属,2007(6):37.(Wang X F,Chen W Q,Bi H Y,et al.Discussion on hot workability of duplex stainless steel[J].Shanghai Metals,2007(6):37.)
    [9] 方轶琉,程逸明,王月香,等.双相不锈钢热变形行为研究[J].东北大学学报:自然科学版,2009(8):1124.(Fang Y L,Cheng Y M,Wang Y X,et al.Hot deformation behavior of duplex stainless steel[J].Journal of Northeast University:Natural Science,2009(8):1124.)
    [10] Siegmund T,Werner E,Fische F D.On the thermomechanical deformation behavior of duplex-type materials[J].Journal of the Mechanics and Physics of Solids,1995,43(4):495.
    [11] 杜春风,詹凤,杨银辉,等.节镍型双相不锈钢的研究进展[J].金属功能材料,2010(5):63.(Du C F,Zhan F,Yang Y H,et al.Research progress in Nickel-saving duplex stainless steel[J].Metallic Functional Materials,2010(5):63.)
    [12] 江来珠,张伟,王治宇.经济型双相不锈钢的研发进展[J].钢铁研究学报,2013,25(4):1.(Jiang L Z,Zhang W,Wang Z Y.Research and development of lean duplex stainless steel[J].Journal of Iron and Steel Research,2013,25(4):1.)
    [13] 朱岩.Ni、Mn、N对2507超级双相不锈钢组织和性能的影响[D]//哈尔滨:哈尔滨理工大学,2014.(Zhu Y.Effects of Ni Mn N on microstructure and properties of 2507 super duplex stainless steel[D]//Harbin:Harbin University of Science and Technology,2014.)
    [14] 王丽萍,董文学,郭二军,等.Mn含量对00Cr22Ni5Mo3Mnx双相不锈钢组织和性能的影响[J].热加工工艺,2013,42(2):63.(Wang L P,Dong W X,Guo E J,et al.Effect of Mn content on microstruture and properties of 00Cr22Ni5Mo3Mnx duplex stainless steel[J].Hot working Technology,2013,42(2):63.)
    [15] Song L,Hu Q M,Johansson B,et al.Stacking fault energies of Mn,Co and Nb alloyed austenitic stainless steels[J].Acta Materialia,2011,59(14):5728.
    [16] 戴起勋,王安东,程晓农.低温奥氏体钢的层错能[J].钢铁研究学报,2002,14(4):34.(Dai Q X,Wang A D,Cheng X N.Stacking fault Energy of cryogenic austenitic steel[J].Journal of Iron and Steel Research,2002,14(4):34.)
    [17] Farahat A I Z,Hamed O,El-Sisi A,et al.Effect of hot forging and Mn content on austenitic stainless steel containing high carbon[J].Materials Science and Engineering,2011,530A(1):98.
    [18] Jang Y,Kim S,Lee J.Effect of different mo contents on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels[J].Metallurgical and Materials Transactions,2005,36A(5):1229.
    [19] 陈尹泽,杜雪岩.Mn元素对20Cr-18Ni-6Mo奥氏体不锈钢力学性能的影响[J].中国铸造装备与技术,2009(6):26.(Chen Y Z,Du X Y.Effect of Mn on mechanics properties of 20Cr-18Ni-6Mo austenitic stainless steel[J].China Foundry Machinery and Technology,2009(6):26.)
    [20] 王月香,刘振宇,王国栋,等.双相不锈钢2205热变形行为的实验[J].塑性工程学报,2012,19(4):89.(Wang Y X,Liu Z Y,Wang G D,et al.Laboratory study on hot deformation behavior of 2205 duplex stainless steel[J].Journal of Plasticity Engineering,2012,19(4):89.)
    [21] 胡勇,陈威,李晓诚,等.HMn62-3-3合金的热变形行为及热加工图[J].材料导报,2017,31(16):144.(Hu Y,Chen W,Li X C,et al.Hot deformation behavior and hot precessing map for HMn62-3-3 alloy[J].Materials Review,2017,31(16):144.)
    [22] Bao Y,Yang D,Liu N,et al.High temperature deformation behavior and processing map of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders[J].Journal of Iron and Steel Research International,2017,24(4):435.
    [23] 杜诗文,陈双梅.LZ50钢的热变形行为及热加工图[J].材料热处理学报,2016(3):223.(Du S W,Chen S M.Hot deformation behavior and processing maps of LZ50 steel[J].Transactions of Materials and Heat Treatment,2016(3):223.)
    [24] Duprez L,Cooman B C D,Akdut N.Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation[J].Metallurgical and Materials Transactions,2002,33A(7):1931.
    [25] Cabrera J M,Mateo A,Llanes L,et al.Hot deformation of duplex stainless steels[J].Journal of Materials Processing Technology,2003,143/144(36):321.
    [26] Farnoush H,Momeni A,Dehghani K,et al.Hot deformation characteristics of 2205 deplex stainless steel based on the behavior of constituent phases[J].Materials and Design,2010,31(1):220.
    [27] 吴琨.经济型双相不锈钢2101高温变形行为及机理研究[D]//西安:西安建筑科技大学,2013.(Wu K.Study on Hot Deformation Behavior and Mechanism of Economical Duplex Stainless Steel 2101[D]//Xi′an:Xian University of Architecture and Technology,2013.)
    [28] 童骏.超级双相不锈钢的拉伸性能及热变形行为研究[D]//秦皇岛:燕山大学,2006.(Tong J.Study of Tensile Properties and Hot Deformation Behavior of Super Duplex Stainless Steels[D]//Qinhuangdao:Yanshan University,2006.)
    [29] Zener C,Hollomon J H.Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics,1994,15(1):22.
    [30] Prasad Y V R K,Seshacharyulu T.Processing maps for hot working of titanium alloys[J].Materials Science and Engineering,1998,243A(1/2):82.
    [31] 袁武华,龚雪辉,孙永庆,等.0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J].材料工程,2016,44(5):8.(Yuan W H,Gong X H,Sun Y Q,et al.Hot deformation behavior and processing map of 0Cr16Ni5Mo low carbon martensitic stainless steel[J].Journal of Materials Engineering,2016,44(5):8.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700