基于动态力学模型分析的钛合金切削过程进给量对表面质量的影响规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Feed on Surface Quality in Titanium Alloy Cutting Process Based on Dynamic Mechanical Model Analysis
  • 作者:王晨羽 ; 李金泉
  • 英文作者:WANG Chen-yu;LI Jin-quan;School of Mechanical Engineering,Shenyang Ligong University;
  • 关键词:进给量 ; 表面质量 ; 切削力 ; 切削振动 ; 动力学模型
  • 英文关键词:feed rate;;surface quality;;cutting force;;cutting vibration;;dynamical model
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:沈阳理工大学机械工程学院;
  • 出版日期:2019-06-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51775357);; 辽宁省自然科学基金(20170540785)~~
  • 语种:中文;
  • 页:BMJS201906047
  • 页数:6
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:384-389
摘要
目的建立单自由度工件-刀具振动系统动力学模型,定量研究进给量对钛合金Ti-6Al-4V切削力和振动加速度的影响规律。方法采用改变进给量的单因素试验,选用涂层硬质合金刀具车削钛合金Ti-6Al-4V,通过DYTRAN加速度传感器、YDCB-Ⅲ05三向压电测力系统对试验过程中切削振动和切削力进行检测,运用MATLAB、Origin软件对采集的振动加速度和切削力信号进行处理和分析,采用120mm位相光栅干涉粗糙度轮廓仪(Talysurf PGI840)测量其表面粗糙度。结果当进给量分别为0.1、0.15、0.2、0.24、0.3 mm/r时,振动加速度的均方根分别为0.2413g、0.3299g、0.3945g、0.4468g、0.5737g;算数平均高度Ra分别为0.5383、0.9391、1.4781、1.9849、3.0117μm;平均谷深度Rz分别为3.1846、4.6445、6.3059、8.3383、11.6506μm,随进给量的增大,切削力、振动加速度和表面粗糙度均增大。结论当刀具进给量增大时,刀具与工件之间的接触面积增大,摩擦力增大,从而引起切削力稳态分量的增大,根据单自由度工件-刀具振动系统动力学模型可知,切削力稳态分量增大,切削振动加速度随之增大,会使刀尖位移增大,造成表面粗糙度值随着进给量的增大而增大。
        The work aims to establish the dynamic model of single-degree-of-freedom in workpiece-tool vibration system so as to quantitatively study the influence of feed on cutting force and vibration acceleration of titanium alloy Ti-6 Al-4 V. The single factor test of changing the feed rate was adopted. Ti-6 Al-4 V titanium alloy was turned by coated hard alloy tool. The cutting vibration and cutting force in the cutting process were tested by DYTRAN acceleration sensor and YDCB-II105 three-dimensional piezoelectric force measuring system. The collected vibration acceleration and cutting force signals were processed and analyzed by MATLAB and Origin software. The surface roughness was measured by 120 mm Talysurf PGI840 roughness tester. When the feed rates was 0.1, 0.15, 0.2, 0.24 and 0.3 mm/r, respectively, the mean square roots of the vibration acceleration were 0.2413 g, 0.3299 g, 0.3945 g, 0.4468 g and 0.5737 g, respectively, the average arithmetic heights of Ra was0.538, 0.9391, 1.4778, 1.984 and 3.0117 μm, respectively and the average valley depth Rz was 3.1846, 4.64445, 6.3059, 8.338 and 11.6506 μm, respectively. With the increase of the feed, all of the cutting force, vibration acceleration and the surface roughness increased. The contact area between the tool and the workpiece increases with the increase of feed rate, which leads to the increase of the friction force and the steady-state component of the cutting force. From the dynamic model of the workpiece-tool vibration system, the vibration acceleration increases with the increase of the steady-state component of the cutting force, thus causing bigger tip displacement and resulting in that the surface roughness increases with increase of the feed rate.
引文
[1]STEFAN C,CONSTANTINOS F,ANDREAS A,et al.Influence of work material microstructure on vibrations when machining cast Ti-6Al-4V[J].International journal of advanced manufacturing technology,2016,84:2277-2291.
    [2]张喜燕,赵永庆,王晨光.钛合金及应用[M].北京:化工业出版社,2005.ZHANG Xi-yan,ZHAO Yong-qing,WANG Chen-guang.Titanium alloy and applications[M].Beijing:Chemical Industry Press,2005.
    [3]EZUGWU E O,BONNEY J Y Y.An overview of the machinability of aeroengine alloys[J].Journal of materials processing technology,2003,134:233-253.
    [4]袁森,何林,占刚,等.硬质合金微坑车刀切削304不锈钢时的表面粗糙度研究[J].机械工程学报,2018,54(15):232-240.YUAN Sen,HE Lin,ZHAN Gang,et al.Research on surface roughness of 304 stainless steel cut by cemented carbide micro pit tool[J].Journal of mechanical engineering,2018,54(15):232-240.
    [5]张慧萍,张校雷,张洪霞,等.300M超高强钢车削加工表面质量[J].表面技术,2016,45(2):181-187.ZHANG Hui-ping,ZHANG Xiao-lei,ZHANG Hong-xia,et al.Surface quality of high-speed turning 300M ultrahigh strength steel[J].Surface technology,2016,45(2):181-87.
    [6]ZHU Li-da,LI Hao-nan,WANG Wan-shan.Research on rotary surface topography by orthogonal turn-milling[J].International journal of advanced manufacturing technology,2013,69:2279-2292.
    [7]巩亚东,梁彩霞,李强,等.硬质合金刀具铣削镍基单晶高温合金DD5磨损试验[J].东北大学学报(自然科学版),2018,39(9):1283-1287.GONG Ya-dong,LIANG Cai-xia,LI Qiang,et al.Wear experiment of carbide tool for milling nickel-based single crystal super alloy DD5[J].Journal of northeastern university(natural science),2018,39(9):1283-1287.
    [8]杨昊.高强高硬钢硬态切削的切削性能实验研究[D].北京:北京理工大学,2014.YANG Hao.The experimental research on the cutting performance of high strength and hardness steel hard cutting[D].Beijing:Beijing Institute of Technology,2014.
    [9]BASHIR B M,WAN Min,YANG Liu,et al.Active damping of milling vibration using operational amplifier circuit[J].Chinese journal of mechanical engineering,2018,31(5):58-65.
    [10]LIU Chang-fu,ZHU Li-da,NI Chen-bing.Chatter detection in milling process based on VMD and energy entropy[J].Mechanical systems and signal processing,2018,105:169-182.
    [11]PENG C,WANG L,LIAO T W.A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine[J].Journal of sound and vibration,2015,354(10):118-131.
    [12]TURKES E,ORAK S,NESELI S,et al,Linear analysis of chatter vibration and stability for orthogonal cutting in turning[J].International journal of refractory metals and hard materials,2011,29(2):163-169.
    [13]黄华,张树有,刘晓健,等.基于动力学不确定性的重型切削工艺参数优化[J].振动、测试与诊断,2016,36(5):907-914.HUANG Hua,ZHANG Shu-you,LIU Xiao-jian,et al.Optimization of process parameters for heavy-duty milling based on the uncertainty of cutting dynamics[J].Journal of vibration,measurement&diagnosis,2016,36(5):907-914.
    [14]DEVILLEZ A,DUDZINSKI D.Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers[J].Mechanical systems&signal processing,2007,21(1):441-456.
    [15]YUE Cai-xu,GAO Hai-ning,LIU Xian-li,et al.A review of chatter vibration research in milling[J].Chinese journal of aeronautics,2019,32(2):1-28.
    [16]张洁,刘成颖.薄壁工件铣削过程中强迫振动响应分析[J].清华大学学报(自然科学版),2018,58(11):961-965.ZHANG Jie,LIU Cheng-ying.Forced vibration response during the milling of thin-walled workpieces[J].Journal of Tsinghua University(science and technology),2018,58(11):961-965.
    [17]LI Zhong-qun,LIU Qiang,YUAN Song-mei,et al.Prediction of dynamic cutting force and regenerative chatter stability in inserted cutters milling[J].Chinese journal of mechanical engineering,2013,26(3):555-563.
    [18]PARIS H,PEIGNE G,MAYER R.Surface shape prediction in high speed milling[J].International journal of machine tools&manufacture,2004,44(15):1567-1576.
    [19]许本文,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社,1998:5-11.XU Ben-wen,JIAO Qun-ying.Mechanical vibration and modal analysis[M].Beijing:Machinery Industry Press,1998:5-11.
    [20]仇健.基于动态切削过程仿真的外圆车削稳定性判定[J].机械工程学报,2019,55(3):208-218.QIU Jian.Research on cylindrical turning process stability judgment based on dynamic cutting process[J].Journal of mechanical engineering,2019,55(3):208-218.
    [21]王晨羽,徐碧聪,颜世晶,等.工业纯钛切削过程表面三维形貌研究[J].沈阳理工大学学报,2018,37(4):57-61.WANG Chen-yu,XU Bi-cong,YAN Shi-jing,et al.Study on the surface 3D morphology of industrial pure titanium in cutting process[J].Journal of Shenyang Ligong University,2018,37(4):57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700