锆合金包壳水侧SiC涂层研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on SiC Coating on Waterside of Zirconium Alloy Cladding
  • 作者:郑新海 ; 尹邦跃 ; 吴学志
  • 英文作者:ZHENG Xinhai;YIN Bangyue;WU Xuezhi;Division of Reactor Engineering Technology Research,China Institute of Atomic Energy;
  • 关键词:锆合金包壳 ; SiC涂层 ; 先驱体转化法 ; 微观结构
  • 英文关键词:zirconium alloy cladding;;SiC coating;;precursor infiltration pyrolysis;;microstructure
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:中国原子能科学研究院反应堆工程技术研究部;
  • 出版日期:2019-05-20 16:35
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:v.53
  • 语种:中文;
  • 页:YZJS201906018
  • 页数:6
  • CN:06
  • ISSN:11-2044/TL
  • 分类号:130-135
摘要
研究了聚碳硅烷(PCS)粉末的高温裂解特性及PCS粉末与锆粉间的化学反应机理,并在900℃制备了SiC涂层。研究发现,900℃开始,PCS裂解产物由无定形态SiC向结晶态转变。不同温度下,PCS粉末与锆粉的混合物发生一系列化学反应,产物为ZrC、Zr_2Si、Si_3Zr_5,通过调节反应温度,可控制该化学反应的程度,进而实现对涂层成分的调节。采用先驱体转化法(PIP)在锆合金包壳表面制备了SiC涂层,经PCS溶液浸涂-裂解3次循环可得到SiC陶瓷层,厚度为4μm,涂层成分为SiC,ZrC为过渡层。划痕法测试得到涂层附着力等级为1~2级。
        The pyrolysis characteristics of polycarbosilane(PCS) powder at high temperature and the chemical reaction mechanism between PCS powder and zirconium powder were studied, and SiC coating was prepared at 900 ℃. It is found that the pyrolysis products of PCS change from amorphous SiC to crystalline state at the beginning of 900 ℃. At different temperatures, a series of chemical reactions take place between the mixture of PCS powder and zirconium powder. The products are ZrC, Zr_2Si and Si_3Zr_5. By adjusting the reaction temperature, the extent of chemical reaction can be controlled and the composition of the coating can be adjusted. SiC coating was prepared on zirconium cladding surface by precursor infiltration pyrolysis(PIP). The SiC ceramic layer is obtained by dipping in PCS solution and pyrolytic cracking at 900 ℃ for three cycles and its thickness is 4 μm. The composition of the coating is SiC and ZrC is the transition layer. Scratch method was used to test the adhesion of the coatings, and the adhesion grade is 1-2.
引文
[1] 卡恩R W,哈森P,克雷默E J.核应用中的锆合金[M]//材料科学与技术丛书:核材料(10B卷).北京:科学出版社,1999:1-45.
    [2] MOTTA A T,JEONG Y H.Advanced corrosion-resistant Zr alloys for high burnup and Generation Ⅳ applications,DOE/ROK project number:2003-020-IC[R].USA:Department of Energy International Nuclear Energy Research Initiative,2003.
    [3] IAEA.Waterside corrosion of zirconium alloys in nuclear power plants,TECDOC-996[R].Vienna:IAEA,1998.
    [4] EUCKEN C M,FINDEN P T.Zirconium in the nuclear industry[C]∥8th International Symposium,ASTM STP 1023.Philadelphia,USA:American Society for Testing and Materials,1989:113.
    [5] 赵文金.核工业用高性能锆合金的研究[J].稀有金属快报,2004,23(5):15-20.
    [6] 张伟国.第四代核电站材料问题的挑战[J].腐蚀与防护,2006,27(11):541-543.ZHANG Weiguo.The challenge of materials problem in Generation Ⅳ nuclear energy station[J].Corrosion & Protection,2006,27(11):541-543(in Chinese).
    [7] WINSTON S J,PRICE R.Report on the Gaithersburg nanonuclear workshop and strategic planning recommendations,INL/EXT-12-27297[R].USA:INL,2012.
    [8] DECK C P,JACOBSEN G M,SHEEDER J,et al.Characterization of SiC-SiC composites for accident tolerant fuel cladding[J].Journal of Nuclear Materials,2015,466:667-681.
    [9] WESTWOOD M E,WEBSTER J D,DAY R J,et al.Oxidation protection for carbon fiber composites[J].Journal of Materials Science,1996,31(6):1 389-1 397.
    [10] 孙守金,刘文川,李敏君.碳/碳复合材料表面沉积SiC涂层[J].材料工程,1992,10(4):1-4.SUN Shoujin,LIU Wenchuan,LI Minjun.C/C composites coated with SiC by CVD[J].Journal of Materials Engineering,1992,10(4):1-4(in Chinese).
    [11] VERRALL R A,VLAJIC M D,KRSTIC V D.Silicon carbide as an inert-matrix for a thermal reactor fuel[J].Journal of Nuclear Materials,1999,274:54-60.
    [12] LIPPMANN W,KNORR J,N?RING R,et al.Investigation of the use of ceramic materials in innovative light water reactor fuel rod concepts[J].Nuclear Engineering and Design,2001,205:13-22.
    [13] 刘建章.轻水反应堆用锆合金的研究问题[J].稀有金属材料工程,1996,25(6):2-4.LIU Jianzhang.Research and development of zirconium alloys in light water reactors[J].Rare Metal Materials and Engineering,1996,25(6):2-4(in Chinese).
    [14] CHOY K L.Chemical vapor deposition of coatings[J].Progress in Materials Science,2003,48(2):57-170.
    [15] LEE S G,FOURCADE J.Polymer impregnation and pyrolysis process development for improving thermal conductivity of SiCp/SiC-PIP matrix fabrication[J].Fusion Engineering and Design,2008,83:713-719.
    [16] DONG R,HIRATA Y,SUEYOSHI H,et al.Polymer impregnation and pyrolysis (PIP) method for the preparation of laminated woven fabric/mullite matrix composites with pseudoductility[J].Journal of the European Ceramic Society,2004,24:53-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700