粤西地区不同林分类型土壤重金属含量及生态风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contents and ecology risk assessments of heavy metals in different forest soils in West Guangdong
  • 作者:庄玉婷 ; 冯嘉仪 ; 储双双 ; 吴道铭 ; 王婧 ; 张立超 ; 曾曙才
  • 英文作者:ZHUANG Yuting;FENG Jiayi;CHU Shuangshuang;WU Daoming;WANG Jing;ZHANG Lichao;ZENG Shucai;College of Forestry and Landscape Architecture, South China Agricultural University;
  • 关键词:森林土壤 ; 重金属含量 ; 单项污染指数 ; 内梅罗指数 ; 污染评价 ; 潜在生态风险
  • 英文关键词:forest soil;;heavy metal content;;single pollution index;;Nemerow index;;pollution assessment;;potential ecological risk
  • 中文刊名:HNNB
  • 英文刊名:Journal of South China Agricultural University
  • 机构:华南农业大学林学与风景园林学院;
  • 出版日期:2018-07-09 17:49
  • 出版单位:华南农业大学学报
  • 年:2018
  • 期:v.39
  • 基金:广东省科技计划项目(2015B020207002);; 广东省林业科技创新专项资金项目(2014KJCX022)
  • 语种:中文;
  • 页:HNNB201805005
  • 页数:7
  • CN:05
  • ISSN:44-1110/S
  • 分类号:31-37
摘要
【目的】了解粤西地区不同林分类型土壤重金属的含量特征及污染情况,为其生态风险评价提供理论依据。【方法】以粤西地区桉树Eucalyptus urophylla人工林、马尾松Pinus massoniana人工林、杉木Cunninghamia lanceolata人工林、相思Acacia spp.人工林和阔叶混交林5种林分类型为研究对象,分析不同林分0~20 cm土层土壤中Cu、Zn、Pb、Cd和Ni的含量,并采用单项污染指数(Pi)法、内梅罗综合污染指数(PN)法和Hakanson潜在生态风险指数(RI)法对各林分土壤重金属污染情况进行污染评价及潜在生态风险评价。【结果】各林分土壤重金属含量均以Zn最高,Cd最低,但均未超过广东省土壤背景值;土壤pH为3.62~6.42,呈酸性。马尾松人工林土壤中Cu质量分数(16.06 mg·kg~(-1))及桉树人工林土壤中Pb质量分数(12.37 mg·kg~(-1))均显著高于阔叶混交林土壤中相应重金属的质量分数(9.21和6.87 mg·kg~(-1));人工林土壤重金属含量间的相关性显著。5种林分土壤重金属Pi均小于1,污染等级均为清洁;土壤重金属P_i及P_N均表现为:马尾松人工林>杉木人工林>桉树人工林>相思人工林>阔叶混交林,除马尾松人工林外,其余林分的综合污染等级均为安全。单一及多种重金属的潜在生态风险评价结果均为轻微风险,单一重金属潜在生态风险系数(E_i)表现为Cd最大,Zn最小,多种重金属RI表现为马尾松人工林最高,阔叶混交林最低。【结论】Hakanson潜在生态风险指数法能更综合地反映土壤受重金属污染情况;本研究评价结果表明,防止和减少森林土壤中人为的重金属输入仍是一项需要长久坚持的必要举措。
        【Objective】To understand heavy metal content characteristics and pollution conditions in different forest soils in west Guangdong, and provide a theoretical basis for their ecology risk assessments.【Method】Eucalyptus urophylla plantation, Pinus massoniana plantation, Cunninghamia lanceolata plantation, Acacia spp. plantation and broad-leaved mixed forest in West Guangdong were chosen to investigate heavy metal(Cu, Zn, Pb, Cd and Ni)contents in soil at the 0–20 cm depth. Single pollution index(P_i), Nemerow index(PN) and Hakanson potential ecological risk index(RI) methods were used to assess heavy metal pollution conditions and potential ecological risks in different forest soils.【Result】Cd content was the lowest while Zn content was the highest in all studied forest soils, but they were all below soil background value of Guangdong Povince. The values of pH ranged from 3.62 to 6.42, presenting acidic. Both Cu content(16.06 mg·kg~(-1)) in P. massoniana plantation soil and Pb content(12.37 mg·kg~(-1)) in E. urophylla plantation soil were significantly higher than those in broadleaved mixed forest soil(9.21 and 6.87 mg·kg~(-1)). The correlations among five heavy metal contents in plantations were significant. All Pi values in five forests were lower than 1, indicating no contamination. Both Pi and PN ranks in five forests were as follows: P. massoniana plantation>C. lanceolata plantation>E. urophylla plantation>Acacia spp. plantation>broad-leaved mixed forest. Except P. massoniana plantation, the pollution levels of all other forests were safe. The potential ecological risk assessment results of single and multiple heavy metals were slight risk. The potential ecological risk coefficients(E_i) of single heavy metal showed that Cd had the highest value while Zn had the lowest value. The results of RI showed that P. massoniana forest had the highest value and broad-leaved mixed forest had the lowest value.【Conclusion】The Ei method can more comprehensively reflect the soil heavy metal contamination. According to its assessment results, it is still a longterm and necessary measure to prevent and reduce heavy metal pollution caused by human.
引文
[1]孙慧珍,陆小静,陈明月,等.哈尔滨市不同类型人工林土壤重金属含量[J].应用生态学报,2011,22(3):614-620.
    [2]JEROME O N.A history of global metal pollution[J].Science,1996,272(5259):223-224.
    [3]郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.
    [4]CHEN T B,WONG M H,WONG J W C,et al.Heavy metal distribtionin surface soils of Hongkong and the assessment of the soil environmental quality:A case study[J].Environ Pollut,1997,96(10):61-68.
    [5]ABRAHAMS P W.Soils:Their implications to human health[J].Sci Total Environ,2002,291(1):1-32.
    [6]WEI X,GAO B,WANG P,et al.Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing,China[J].Ecotoxicol Enviro Saf,2015,112(5):186-192.
    [7]冯乙晴,刘灵飞,肖辉林,等.深圳市典型工业区土壤重金属污染特征及健康风险评价[J].生态环境学报,2017,26(6):1051-1058.
    [8]宁翠萍,李国琛,王颜红,等.细河流域农田土壤重金属污染评价及来源解析[J].农业环境科学学报,2017,36(3):487-495.
    [9]SUN Y,ZHOU Q,XIE X,et al.Spatial,sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang,China[J].J Hazard Mater,2010,174(1/2/3):455-462.
    [10]李梅,吴启堂,李锐,等.佛山市郊污灌菜地土壤和蔬菜的重金属污染状况与评价[J].华南农业大学学报,2009,30(2):19-21.
    [11]李姗姗,曹广超,石平超,等.青岛城区土壤重金属元素空间分布及其现状评价[J].生态与农村环境学报,2015,31(1):112-117.
    [12]林文杰.莲花山钨矿区土壤重金属污染与理化特征[J].土壤通报,2014,45(1):232-236.
    [13]王大鹏,王文斌,郑亮,等.中国主要人工林土壤有机碳的比较[J].生态环境学报,2014,23(4):698-704.
    [14]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
    [15]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [16]李祚泳,丁晶,彭荔红.环境质量评价原理与方法[M].北京:化学工业出版社,2004.
    [17]广东省环境监测中心站.广东省土壤环境背景值数据集[R].北京:中国环境科学出版社,1990.
    [18]中华人民共和国环境保护部.土壤环境质量国家标准:GB 15618-1995[S].北京:中国环境出版社,1995.
    [19]马军,刘爱琴,侯晓龙,等.福州城市边缘区森林土壤重金属污染特征及评价[J].环境科学与技术,2011,34(3):149-153.
    [20]HAKANSON L.An ecological risk index for aquatic pollution control:A sedimentological approach[J].Water Res,1980,14(8):975-1001.
    [21]楚春晖,佘宇晨,佘济云,等.亚热带不同森林类型的土壤重金属空间分布特征及其潜在生态风险[J].水土保持学报,2014,28(5):258-263.
    [22]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [23]方晰,唐志娟,田大伦,等.长沙城市森林土壤7种重金属含量特征及其潜在生态风险[J].生态学报,2012,32(23):7595-7606.
    [24]丁振华,贾洪武,刘彩娥,等.黄浦江沉积物重金属的污染及评价[J].环境科学与技术,2006,29(2):64-66.
    [25]MANTA D S,ANGELONE M,BELLANCA A,et al.Heavy metals in urban soils:A case study from the city of Palermo(Sicily),Italy[J].Sci Total Environ,2002,300(1/2/3):229-243.
    [26]欧芷阳,苏志尧,朱剑云.东莞市4种人工林土壤重金属含量的特征及评价[J].西部林业科学,2013,42(6):38-44.
    [27]潘勇军,陈步峰,肖以华,等.广州市城市森林土壤重金属污染状况及其评价[J].生态环境,2008,17(1):210-215.
    [28]JEROME O N,JOZEF M P.Quantitative assessment of worldwide contamination of air,water and soils by trace metals[J].Nature,1988,333(6169):134-139.
    [29]ROBERTSON D J,TAYLOR K G,HOON S R.Geochemical and mineral magnetic characterisation of urban sediment particulates,Manchester,UK[J].Appl Geochem,2003,18(2):269-282.
    [30]简毅,张健,杨万勤,等.岷江下游小型集水区不同林分土壤重金属污染特征及其生态风险评价[J].生态环境学报,2015,24(9):1526-1533.
    [31]VANDECASTEELE B,QUATAERT P,TACK F M G.Uptake of Cd,Zn and Mn by willow increases during terrestrialisation of initially ponded polluted sediments[J].Sci Total Environ,2007,380(1/2/3):133-143.
    [32]卢瑛,龚子同,张甘霖,等.南京城市土壤重金属含量及其影响因素[J].应用生态学报,2004,15(1):123-126.
    [33]许超,夏北成,何石媚,等.大宝山矿山下游地区稻田土壤重金属含量特征[J].中山大学学报(自然科学版),2008,47(3):122-127.
    [34]乔冬梅,齐学斌,庞鸿宾,等.不同p H值对重金属Pb2+形态的影响研究[J].水土保持学报,2010,24(6):173-176.
    [35]徐燕,李淑芹,郭书海,等.土壤重金属污染评价方法的比较[J].安徽农业科学,2008,36(11):4615-4617.
    [36]徐鸿志,常江.安徽省主要土壤重金属污染评价及其评价方法研究[J].土壤通报,2008,39(2):411-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700