堆肥添加氧化石墨烯和纳米SiO_2对高羊茅生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of graphene oxide and nano-SiO_2 on the growth of Festuca arundinacea growing in waste compost
  • 作者:王鑫禹 ; 多立安 ; 赵树兰
  • 英文作者:WANG Xinyu;DUO Li′an;ZHAO Shulan;College of Life Sciences,Tianjin Normal University;
  • 关键词:氧化石墨烯 ; 纳米SiO2 ; 钝化剂 ; 高羊茅 ; 抗氧化酶
  • 英文关键词:graphene oxide;;nano-SiO2;;passivator;;Festuca arundinacea;;antioxidant enzyme
  • 中文刊名:TJSD
  • 英文刊名:Journal of Tianjin Normal University(Natural Science Edition)
  • 机构:天津师范大学生命科学学院;
  • 出版日期:2019-01-30
  • 出版单位:天津师范大学学报(自然科学版)
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(31870484)
  • 语种:中文;
  • 页:TJSD201901025
  • 页数:6
  • CN:01
  • ISSN:12-1337/N
  • 分类号:60-65
摘要
为了探究氧化石墨烯(GO)和纳米SiO_2对高羊茅生长和生理特征的影响,将1.0%GO与不同比例的纳米SiO_2(均为质量分数)与垃圾堆肥基质混合后播种高羊茅,测定高羊茅的株高、生物量、叶绿素含量、丙二醛(MDA)含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性.结果表明:2种钝化剂均能够显著增加高羊茅的株高,对生物量和叶绿素含量没有显著影响,共同添加GO和0.6%纳米SiO_2处理组的高羊茅株高最大.添加2种钝化剂后,高羊茅的MDA含量显著提高,各钝化剂处理组的MDA含量是对照组的2~3倍.单独添加纳米Si O2的处理使SOD、CAT活性提高,POD、APX活性降低.共同添加GO和纳米SiO_2的处理组中,SOD和CAT活性均随着纳米SiO_2添加比例的增加而增加,POD和APX活性则随添加比例的增加而下降.与单独添加纳米SiO_2的处理相比,共同添加GO和纳米SiO_2对酶活性的影响更大.与对照组相比,添加GO和0.6%的纳米SiO_2后,高羊茅的CAT活性提高了65.18%,APX活性降低了51.10%.由此可见,添加GO和纳米SiO_2对高羊茅构成了逆境胁迫,但在生长期内没有显著影响高羊茅的正常生长发育.
        In order to explore the effects of graphene oxide(GO)and nano-SiO_2 on the growth and physiological character-istics of Festuca arundinacea,F. arundinacea was planted in municipal solid waste(MSW)compost mixed with 1.0% GOand different proportion of nano-SiO_2(mass fraction). The plant height,biomass,chlorophyll content,malondialdehyde(MDA)content,super-oxide dismutase(SOD),peroxidase(POD),catalase(CAT)and ascorbic acid peroxidase(APX)activitywere measured. The results showed that two kinds of passivators significantly increased the plant height of F. arundinaceaand had no significant effect on biomass and the chlorophyll content. The addition of GO and 0.6 % nano-SiO_2 togetherresulted in the highest plant height. GO and nano-SiO_2 significantly increased MDA content. MDA contents in four GO andnano-SiO_2 treatments were 2-3 times as those of the control. The addition of nano-SiO_2 alone increased SOD and CATactivities,and decreased POD and APX activities. When GO was applied together with nano-SiO_2,the SOD and CAT activitiesincreased with the increase of the proportion of nano-SiO_2,and the activities of POD and APX decreased with the increaseof the proportion of nano-SiO_2. Compared with the addition of nano-SiO_2 alone,combined addition of GO and nano-SiO_2 hada greater effect on the enzyme activity. Compared with the control, the CAT activity increased 65.18% and theAPX activity decreased 51.10% in the treatment of GO and 0.6% nano-SiO_2. It can be concluded that the addition of GOand nano-SiO_2 caused stress to F. arundinacea,but did not significantly affect the normal growth and development of F.arundi-nacea during the growth period.
引文
[1]白雪,贺璐,赵树兰,等.改性纳米碳黑隔层对络合剂存在下草坪堆肥基质重金属淋溶的影响[J].天津师范大学学报(自然科学版),2016,36(4):59-63.BAI X,HE L,ZHAO S L,et al. Effects of modified nano-carbon blackbarriers on the leaching of heavy metals mobilized by chelators in turf-grass compost medium[J]. Journal of Tianjin Normal University(NaturalScience Edition),2016,36(4):59-63(in Chinese).
    [2]崔岩山,王鹏飞,琚宜文.纳米材料在土壤重金属污染修复中的应用[J].地球科学,2018,43(5):1737-1745.CUI Y S,WANG P F,JU Y W. Progress of applications of nanomateri-als in soil heavy metal remediation[J]. Earth Science,2018,43(5):1737-1745(in Chinese).
    [3] KARN B,KUIKEN T,OTTO M,et al. Nanotechnology and in situ re-mediation:A review of the benefits and potential risks[J]. Environmen-tal Health Perspectives,2009,117(12):1823-1831.
    [4] VAN FREDERIK F,VAN HAVERE L,DU LAING G. Impact of car-boxymethyl cellulose coating on iron sulphide nanoparticles stability,transport,and mobilization potential of trace metals present in soils andsediment[J]. Journal of Environmental Management,2016,168:210-218.
    [5] WEI Y,XU L,YANG K. Electrosorption of toxic heavy metal ions bymono S-or N-doped and S,N-codoped 3D graphene aerogels[J]. Jour-nal of the Electrochemical Society,2017,164(2):17-22.
    [6]孙静静,许利剑.纳米二氧化硅的改性及其应用的新进展[J].化工时刊,2012,26(4):52-58.SUN J J,XU L J. The new development of modification and applicationof nano-Silica[J]. Chemical Industry Times,2012,26(4):52-58(inChinese).
    [7]王怡君,张世熔,肖罗怡. 3种纳米材料对低分子质量有机酸淋洗铅、锌和镉效率的影响[J].环境工程学报,2016,10(10):6001-6008.WANG Y J,ZHANG S R,XIAO L Y. Effect of Pb,Zn and Cd removalefficiencies from contaminated soil by low molecular weight organicacid and three kinds of nanomaterials[J]. Chinese Journal of Environ-mental Engineering,2016,10(10):6001-6008(in Chinese).
    [8]吴金海,焦靖芝,谢伶俐.氧化石墨烯处理对甘蓝型油菜生长发育的影响[J].基因组学与应用生物学,2015,34(12):2738-2742.WU J H,JIAO J Z,XIE L L. Effects of graphene oxide on growth anddevelopment of Brassica napus L[J]. Genomics and Applied Biology.2015,34(12):2738-2742(in Chinese).
    [9]刘建华,钱瑭璜,彭昭良.纳米硅对中华结缕草种子萌发和幼苗期生长的影响[J].天津农业科学,2017,23(4):6-9.LIU J H,QIAN T H,PENG Z L. Effects of nano-Silicon on the germi-nation and seeding growth of Zoysiasinica[J]. Tianjin Agricultural Sci-ences,2017,23(4):6-9(in Chinese).
    [10] RALIYA R,NAIR R,CHAVALMANE S. Mechanistic evaluation oftranslocation and physiological impact of titanium dioxide and zinc oxidenanoparticles on the tomato(Solanum lycopersicum L.)plant[J]. Met-allomics,2015,7(12):1584-1594.
    [11] CAKIR Y,CAKIR O U. Phytotoxicity of graphene in tomatoes and bean[C]//Fifth International Conference on Agro-Geoinformatics. Piscataway:IEEE Press,2016.
    [12]郭敏,龚继来,曾光明.多壁碳纳米管对水稻幼苗的植物毒性研究[J].生态毒理学报,2016,11(5):94-102.GUO M,GONG J L,ZENG G M. Comprehensive phytotoxicity assess-ment of multi-wall carbon nanotubes on rice seedlings[J]. Asian Journalof Ecotoxicology,2016,11(5):94-102(in Chinese).
    [13] ZHANG P,ZHANG R,FANG X,et al. Toxic effects of graphene onthe growth and nutritional levels of wheat(Triticum aestivum L.):Short-and long-term exposure studies[J]. Journal of Hazardous Materials,2016,317:543-551.
    [14]文双喜,王毅力.水培实验中不同粒径纳米TiO2对芦苇种子发芽和植株生长和生理的影响[J].生态毒理学报,2017,12(2):71-80.WEN S X,WANG Y L. Effects of nano titanium dioxide with differentparticle size on the seed germination and plant growth and physiology ofPhragmites australis in hydroponic experiments[J]. Asian Journal ofEcotoxicology,2017,12(2):71-80(in Chinese).
    [15]徐俊.纳米硅肥对水稳抗早衰和增产作用研究[D].杭州:浙江大学,2016.XU J. Effect of Nano Silicon Fertilizer on Senescence and Yield of Rice[D].Hangzhou:Zhejiang University,2016(in Chinese).
    [16] HE J,JI Z X,WANG Q Z. Effect of Cu and Pb pollution on the growthand antionxidant enzyme activity of Suaeda heteroptera[J]. EcologicalEngineering,2016,87:102-109.
    [17]李璇,岳红,王升.影响植物抗氧化酶活性的因素及其研究热点和现状[J].中国中药杂志,2013,38(7):973-978.LI X,YUE H,WANG S. Research of different effects on activity ofplant antioxidant enzymes[J]. China Journal of Chinese Materia Medica,2013,38(7):973-978(in Chinese).
    [18] EKMEKCI Y,TANYOLAC D B. Effects of cadmium on antioxidant en-zyme and photosynthetic activities in leaves of two maize cultivars[J].Journal of Plant Physiology,2008,165(6):600-611.
    [19]王震宇,于晓莉,高冬梅.人工合成纳米TiO2和MWCNTs对玉米生长及其抗氧化系统的影响[J].环境科学,2010,31(2):480-487.WANG Z Y,YU X L,GAO D M. Effects of nano-rutile TiO2and multi-walled carbon nanotubes on the growth of maize(Zea mays L.)seedlingsand the relevant antioxidant response[J]. Environmental Science,2010,31(2):480-487(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700