Surface modification with oxygen vacancy in Li-rich layered oxide Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 for lithium-ion batteries
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface modification with oxygen vacancy in Li-rich layered oxide Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 for lithium-ion batteries
  • 作者:Bozhou ; Chen ; Bangchuan ; Zhao ; Jiafeng ; Zhou ; Zhitang ; Fang ; Yanan ; Huang ; Xuebin ; Zhu ; Yuping ; Sun
  • 英文作者:Bozhou Chen;Bangchuan Zhao;Jiafeng Zhou;Zhitang Fang;Yanan Huang;Xuebin Zhu;Yuping Sun;Key Laboratory of Materials Physics,Institute of Solid State Physics,Chinese Academy of Sciences;University of Science and Technology of China;High Magnetic Field Laboratory,Chinese Academy of Sciences;
  • 英文关键词:Li-rich cathode oxide material;;Oxygen vacancy;;Solvothermal method;;Electrochemical performance
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Key Laboratory of Materials Physics,Institute of Solid State Physics,Chinese Academy of Sciences;University of Science and Technology of China;High Magnetic Field Laboratory,Chinese Academy of Sciences;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported financially by the National Key Research and Development Program(No.2017YFA0402800);; the National Natural Science Foundation of China(Nos.U1732160and 11504380)
  • 语种:英文;
  • 页:CLKJ201906006
  • 页数:9
  • CN:06
  • ISSN:21-1315/TG
  • 分类号:40-48
摘要
A couple of layered Li-rich cathode materials Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 without any carbon modification are successfully synthesized by solvothermal and hydrothermal methods followed by a calcination process. The sample synthesized by the solvothermal method(S-NCM) possesses more homogenous microstructure, lower cation mixing degree and more oxygen vacancies on the surface, compared to the sample prepared by the hydrothermal method(H-NCM). The S-NCM sample exhibits much better cycling performance, higher discharge capacity and more excellent rate performance than H-NCM. At 0.2 C rate,the S-NCM sample delivers a much higher initial discharge capacity of 292.3 mAh g~(-1) and the capacity maintains 235 m Ah g~(-1) after 150 cycles(80.4% retention), whereas the corresponding capacity values are only 269.2 and 108.5 m Ah g~(-1)(40.3% retention) for the H-NCM sample. The S-NCM sample also shows the higher rate performance with discharge capacity of 118.3 mAh g~(-1) even at a high rate of 10 C, superior to that(46.5 m Ah g~(-1)) of the H-NCM sample. The superior electrochemical performance of the S-NCM sample can be ascribed to its well-ordered structure, much larger specific surface area and much more oxygen vacancies located on the surface.
        A couple of layered Li-rich cathode materials Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2 without any carbon modification are successfully synthesized by solvothermal and hydrothermal methods followed by a calcination process. The sample synthesized by the solvothermal method(S-NCM) possesses more homogenous microstructure, lower cation mixing degree and more oxygen vacancies on the surface, compared to the sample prepared by the hydrothermal method(H-NCM). The S-NCM sample exhibits much better cycling performance, higher discharge capacity and more excellent rate performance than H-NCM. At 0.2 C rate,the S-NCM sample delivers a much higher initial discharge capacity of 292.3 mAh g~(-1) and the capacity maintains 235 m Ah g~(-1) after 150 cycles(80.4% retention), whereas the corresponding capacity values are only 269.2 and 108.5 m Ah g~(-1)(40.3% retention) for the H-NCM sample. The S-NCM sample also shows the higher rate performance with discharge capacity of 118.3 mAh g~(-1) even at a high rate of 10 C, superior to that(46.5 m Ah g~(-1)) of the H-NCM sample. The superior electrochemical performance of the S-NCM sample can be ascribed to its well-ordered structure, much larger specific surface area and much more oxygen vacancies located on the surface.
引文
[1] S. Chong, Y. Chen, W. Yan, S. Guo, Q. Tan, Y. Wu, T. Jiang, Y. Liu, J. Power Sources 332(2016)230–239.
    [2] D. Dai, D. Yan, B. Li, K. Chang, Z. Chang, H. Tang, Y. Li, S. Zhou, Electrochim.Acta 235(2017)632–639.
    [3] F. Ding, J. Li, F. Deng, G. Xu, Y. Liu, K. Yang, F. Kang, ACS Appl. Mater. Interf. 9(2017)27936–27945.
    [4] X. Feng, Z. Yang, D. Tang, Q. Kong, L. Gu, Z. Wang, L. Chen, Phys. Chem. Chem.Phys. 17(2015)1257–1264.
    [5] M. Gu, A. Genc, I. Belharouak, D.P. Wang, K. Amine, S. Thevuthasan, D.R. Baer,J.G. Zhang, N.D. Browning, J. Liu, C.M. Wang, Chem. Mater. 25(2013)2319–2326.
    [6] M. Lengyel, G. Atlas, D. Elhassid, P.Y. Luo, X. Zhang, I. Belharouak, R.L.Axelbaum, J. Power Sources 262(2014)286–296.
    [7] C. Lu, S. Yang, H. Wu, Y. Zhang, X. Yang, T. Liang, Electrochim. Acta 209(2016)448–455.
    [8] Z. Wang, E. Liu, L. Guo, C. Shi, C. He, J. Li, N. Zhao, Surf. Coat. Technol. 235(2013)570–576.
    [9] W. Yuan, H.Z. Zhang, Q. Liu, G.R. Li, X.P. Gao, Electrochim. Acta 135(2014)199–207.
    [10] Y. Liu, Y. Gao, Q. Wang, A. Dou, Ionics 20(2014)825–831.
    [11] X. Wei, S. Zhang, Z. Du, P. Yang, J. Wang, Y. Ren, Electrochim. Acta 107(2013)549–554.
    [12] F. Wu, H. Wang, Y. Bai, Y. Li, C. Wu, G. Chen, L. Liu, Q. Ni, X. Wang, J. Zhou, Solid State Ion. 300(2017)149–156.
    [13] B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, Y.Zhu, Z. Liu, Y.S. Meng, Nat. Commun. 7(2016)12108.
    [14] Y. Li, J. Mei, X. Guo, B. Zhong, H. Liu, G. Liu, S. Dou, RSC Adv. 6(2016)70091–70098.
    [15] X. Hou, Y. Huang, S. Ma, X. Zou, S. Hu, Y. Wu, Mater. Res. Bull. 63(2015)256–264.
    [16] F. Fu, Y. Huang, P. Wu, Y. Bu, Y. Wang, J. Yao, J. Alloys Compd. 618(2015)673–678.
    [17] L. Liu, C. Lu, M. Xiang, Y. Zhang, H. Liu, H. Wu, Chemelectrochem 4(2017)332–339.
    [18] F. Fu, Q. Wang, Y.P. Deng, C.H. Shen, X.X. Peng, L. Huang, S.G. Sun, J. Mater.Chem. A 3(2015)5197–5203.
    [19] G. Wang, L. Yi, R. Yu, X. Wang, Y. Wang, Z. Liu, B. Wu, M. Liu, X. Zhang, X. Yang,X. Xiong, M. Liu, ACS Appl. Mater. Interface 9(2017)25358–25368.
    [20] F. Wu, Z. Wang, Y.F. Su, Y.B. Guan, Y. Jin, N. Yan, J. Tian, L.Y. Bao, S. Chen, J.Power Sources 267(2014)337–346.
    [21] M. Xu, L. Fei, W. Lu, Z. Chen, T. Li, Y. Liu, G. Gao, Y. Lai, Z. Zhang, P. Wang, H.Huang, Nano Energy 35(2017)271–280.
    [22] W. Yan, J. Jiang, W. Liu, D. Sun, E. Zhao, Y. Jin, K. Kanamura, Electrochim. Acta224(2017)161–170.
    [23] Y.P. Deng, F. Fu, Z.G. Wu, Z.W. Yin, T. Zhang, J.T. Li, L. Huang, S.G. Sun, J. Mater.Chem. A 4(2016)257–263.
    [24] M. Lou, H. Zhong, H.T. Yu, S.S. Fan, Y. Xie, T.F. Yi, Electrochim. Acta 237(2017)217–226.
    [25] J. Zeng, Y. Cui, D. Qu, Q. Zhang, J. Wu, X. Zhu, Z. Li, X. Zhang, ACS Appl. Mater.Interface 8(2016)26082–26090.
    [26] Y. Sun, H. Cong, L. Zang, Y. Zhang, ACS Appl. Mater. Interface 9(2017)38545–38555.
    [27] Z. Zheng, X.D. Guo, Y.J. Zhong, W.B. Hua, C.H. Shen, S.L. Chou, X.S. Yang,Electrochim. Acta 188(2016)336–343.
    [28] Y. Zhou, Y. Wang, S. Li, J. Mei, H. Liu, H. Liu, G. Liu, J. Alloys Compd. 695(2017)2951–2958.
    [29] L. Zhang, J. Jiang, C. Zhang, B. Wu, F. Wu, J. Power Sources 331(2016)247–257.
    [30] H. Zhang, T. Yang, Y. Han, D. Song, X. Shi, L. Zhang, L. Bie, J. Power Sources 364(2017)272–279.
    [31] J. Li, T. Jia, K. Liu, J. Zhao, J. Chen, C. Cao, J. Power Sources 333(2016)37–42.
    [32] L. Li, L. Wang, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, ACS Appl. Mater.Interface 9(2017)1516–1523.
    [33] Y. Li, Y. Bai, X.X. Bi, J. Qian, L. Ma, J. Tian, C. Wu, F. Wu, J. Lu, K. Amine,Chemsuschem 9(2016)728–735.
    [34] Y. Li, C. Wu, Y. Bai, L. Liu, H. Wang, F. Wu, N. Zhang, Y.F. Zou, ACS Appl. Mater.Interface 8(2016)18832–18840.
    [35] J. Liu, M. Hou, J. Yi, S. Guo, C. Wang, Y. Xia, Energy Environ. Sci. 7(2014)705–714.
    [36] X. Huang, M. Wang, R. Che, J. Mater. Chem. A 2(2014)9656–9665.
    [37] T.K. Zhao, S.F. She, X.L. Ji, W.B. Jin, A.L. Dang, H. Li, T.H. Li, S.M. Shang, Z.F.Zhou, J. Alloys Compd. 708(2017)500–507.
    [38] T.K. Zhao, W.B. Yang, X. Zhao, X.R. Peng, J.T. Hu, C. Tang, T.H. Li, Compos. Part B150(2018)60–67.
    [39] C. Yang, S. Han, J. Huang, M. Qian, Mater. Chem. Phys. 149(2015)695–700.
    [40] T. Wang, Z. Yang, Y. Jiang, G. Li, Y. Huang, RSC Adv. 6(2016)63749–63753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700