核壳型磁性荧光纳米复合材料的制备及其应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in preparation and application of core-shell structure nanocomposites with magnetism and fluorescence
  • 作者:付绒 ; 杨春林 ; 胡燕燕 ; 欧梅桂
  • 英文作者:FU Rong;YANG Chunlin;HU Yanyan;OU Meigui;College of Materials and Metallurgy, University of Guizhou;National Local Joint Engineering Laboratory for High Performance Metal Structure Materials and Manufacturing Technology;College of Chemistry and Materials engineering, Guiyang University;
  • 关键词:磁性 ; 荧光 ; 制备方法 ; 表面修饰 ; 生物医学应用
  • 英文关键词:magnetism;;fluorescence;;preparation method;;surface modification;;biomedical applications
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:贵州大学材料与冶金学院;高性能金属结构材料与制造技术国家地方联合工程实验室;贵阳学院化学与材料工程学院;
  • 出版日期:2019-08-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:贵州省教育厅工程研究中心项目(黔教合KY字[2017]016);贵州省教育厅科技人才成长项目(黔教合KY字[2017]238);; 贵州省科学技术基金(黔科合基础[2018]1027)
  • 语种:中文;
  • 页:HGJZ201908029
  • 页数:14
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:251-264
摘要
核壳型磁性荧光纳米复合材料是材料领域的研究热点之一,该材料呈现了单一材料无法同时兼有的磁响应性及荧光特性,因此被广泛地应用于生物医疗领域,提高了疾病诊断的效率和准确率,改进了癌症治疗技术。本文简单介绍了具有核壳结构的磁性荧光纳米复合粒子的4种形成机理、一些比较常用的制备方法及其各自的优缺点;重点介绍了纳米复合粒子的表面修饰方法,主要包括表面钝化及表面功能化两大类;对核壳结构磁性荧光纳米复合材料在多模态分子影像、药物的靶向运输与可控释放、癌症的热疗法及光动力疗法等方面的应用作了阐述。最后展望了核壳型磁性荧光纳米复合材料未来的发展趋势,并针对研究过程中所存在的关键问题,提出了今后进一步研究的主要方向为寻找多功能材料的最佳组合及组装方式、优化整合表面修饰剂的性能和明确材料在体内的毒性及代谢情况等。
        Core-shell structured nanocomposites with magnetic and fluorescent properties are one of the research hotspots in the field of materials. The nanocomposites has not only magnetic responsiveness but also fluorescence, presenting characteristics that cannot be simultaneously achieved by a single material.Therefore, they have been widely used in the field of biological medicine and have improved the efficiency and accuracy of disease diagnosis to elevate the techniques of cancer treatment. This paper briefly introduced the four formation mechanisms of core-shell structured nanocomposites with magnetism and fluorescence and a few commonly used preparation methods. The advantages and disadvantages of these methods were analyzed respectively. The surface modification methods(surface passivation and surface functionalization) of nanoparticles were mainly introduced. Moreover, the application of core-shell magnetic and fluorescent nanocomposites in multimodal molecular imaging, targeted transport and controlled release of drugs, thermal therapy and photodynamic therapy for cancer were expounded.Finally, the developing trend of core-shell structured nanocomposites with magnetic and fluorescent was prospected. According to the main problems in the current research, the main research direction in the future was pointed out: finding the best combination and assembly method for multifunctional materials,optimizing and integrating the properties of surface modifier, identifying the toxicity and metabolism of materials in the body, etc.
引文
[1] ARVAND M, SANAYEEI M, HEMMATI S. Label-free electrochemical DNA biosensor for guanine and adenine by ds-DNA/poly(L-cysteine)/Fe3O4nanoparticles-graphene oxide nanocomposite modified electrode[J]. Biosensors&Bioelectronics, 2017, 102:70-79.
    [2] CHA R, LI J, LIU Y, et al. Fe3O4nanoparticles modified by CDcontaining star polymer for MRI and drug delivery[J]. Colloids Surfaces B:Biointerfaces, 2017, 158:213-221.
    [3] CHEN F, ZHAO W, ZHANG J, et al. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins[J]. Physical Chemistry Chemical Physics, 2015, 18(2):718-725.
    [4] MU X, ZHANG F, KONG C, et al. EGFR-targeted delivery of DOXloaded Fe3O4@polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy[J]. International Journal of Nanomedicine, 2017, 12:2899-2911.
    [5] RAYEGAN A, ALLAFCHIAN A, ABDOLHOSSEINI SARSARI I, et al. Synthesis and characterization of basil seed mucilage coated Fe3O4magnetic nanoparticles as a drug carrier for the controlled delivery of cephalexin[J]. International Journal of Biological Macromolecules,2018, 113:317-328.
    [6] RUI H, XING R J, XU Z C, et al. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles[J].Advanced Materials, 2010, 22(25):2729-2742.
    [7] SUN Y Q, DAI C M, ZHENG Y, et al. Binding effect of fluorescence labeled glycyrrhetinic acid with GA receptors in hepatocellular carcinoma cells[J]. Life Sciences, 2017, 188:186-191.
    [8] WEI J R, CHEN H Y, ZHANG W, et al. Ratiometric fluorescence for sensitive and selective detection of mitoxantrone using a MIP@rQDs@SiO2fluorescence probe[J]. Sensors and Actuators B:Chemical, 2017, 244:31-37.
    [9]李燕琴,牟兰,曾晞,等.对Fe~(3+)识别的2种香豆素-氧杂杯[3]芳烃荧光探针[J].贵州大学学报(自然科学版), 2014, 31(3):25-29.LI Yanqin, MU Lan, ZENG Xi, et al. Two oxacalix[3] arene-coumarin fluorescence probes and recognition for Fe3+[J]. Journal of Guizhou University(Natural Science), 2014, 31(3):25-29.
    [10] ZHOU L, WANG R, YAO C, et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers[J]. Nature Communications, 2015, 6:6938.
    [11] FUKUSHIMA S, FURUKAWA T, NIIOKA H, et al. Correlative nearinfrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb(Ln=Tm, Er)nanophosphors for multiscale, multicolour bioimaging[J].Scientific Reports, 2016, 6:25950.
    [12] YAN F Y, FAN K Q, BAI Z J, et al. Fluorescein applications as fluorescent probes for the detection of analytes[J]. Trac Trends in Analytical Chemistry, 2017, 97:15-35.
    [13] QIU H J, CUI B, ZHAO W W, et al. A novel microwave stimulus remote controlled anticancer drug release system based on Fe3O4@ZnO@mGd2O3:Eu@P(NIPAm-co-MAA)multifunctional nanocarriers[J]. Journal of Materials Chemistry B, 2015, 3(34):6919-6927.
    [14] LIU B, LI C, MA P, et al. Multifunctional NaYF4:Yb,Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery[J]. Nanoscale, 2015, 7(5):1839-1848.
    [15] ZHANG F, KONG X Q, LI Q, et al. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging[J]. Talanta, 2016, 148:108-115.
    [16] WEN C Y, XIE H Y, ZHANG Z L, et al. Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles:preparation, properties, and their applications in cancer studies[J].Nanoscale, 2016, 8(25):12406.
    [17] LEE D E, KOO H, SUN I C, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis[J]. Chem.Soc.Rev., 2012, 41(7):2656-2672.
    [18] KIM K D, BAE H J, KIM H T. Synthesis and characterization of titania-coated silica fine particles by semi-batch process[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003, 224(1/2/3):119-126.
    [19] KIM K D, BAE H J, KIM H T. Synthesis and growth mechanism of TiO2-coated SiO2, fine particles[J]. Colloids&Surfaces A Physicochemical&Engineering Aspects, 2003, 221(1):163-173.
    [20] PENG H X, CUI B, LI L L, et al. A simple approach for the synthesis of bifunctional Fe3O4@Gd2O3:Eu3+core-shell nanocomposites[J].Journal of Alloys and Compounds, 2012, 531:30-33.
    [21]陈顺,张俊俊,唐琪,等.磁性荧光纳米材料的制备与性能[J].化学学报, 2013, 71(3):417-420.CHEN Shun, ZHANG Junjun, TANG Qi, et al. Preparation and properties of magnetic fluorescent nanomaterials[J]. Acta Chimica Sinica, 2013,71(3):417-420.
    [22]舒适.未改性SiO2溶胶/聚丙烯酸酯复合乳胶粒的制备及其机理的研究[D].北京:北京化工大学, 2010.SHU Shi. Preparation and mechanism of silica sol/polyacrylate composite latex using bare silica sol[D]. Beijing:Beijing University of Chemical Technology, 2010.
    [23] MOORTHY M S, OH Y, BHARATHIRAJA S, et al. Synthesis of amine-polyglycidol functionalised Fe3O4@SiO2nanocomposites for magnetic hyperthermia, pH-responsive drug delivery, and bioimaging applications[J]. RSC Advances, 2016, 6(111):110444-110453.
    [24] SHCHEKIN A K, RUSANOV A I, KUNI F M,et al. Role of surface forces in heterogeneous nucleation on wettable nuclei[J]. Advances in Colloid&Interface Science, 1996, 65:71-124.
    [25] STEFAN M, LEOSTEAN C, PANA O, et al. Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core-shell nanoparticles[J]. Applied Surface Science, 2014, 288:180-192.
    [26] FAN H T, LI B, FENG Y Q, et al. Multifunctional Fe3O4@SiO2@GdVO4:Eu3+core-shell nanocomposite for a potential drug carrier[J]. Ceramics International, 2016, 42(11):13326-13330.
    [27] LI N, ZHAO Y, CHENG C, et al. Preparation of core-shell magnetic nano-upconversion materials and its targeting effect[J]. Materials Letters, 2018, 227:44-46.
    [28] ZHOU X, CHEN L, WANG A, et al. Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cells research[J]. Colloids and Surfaces B:Biointerfaces, 2015, 134:431-439.
    [29] WANG H, SUN L, LI Y, et al. Layer-by-layer assembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probe for sensitive sensing of Cu2+ions[J]. Langmuir, 2011, 27(18):11609-11615.
    [30] YANG Y H, FAN H T, XIE J P, et al. Facile preparation of multifunctional Fe3O4@SiO2@LaVO4:Eu3+nanocomposites as potential drug carriers[J]. Ceramics International, 2016, 42(16):19445-19449.
    [31] SHI J H, TONG L Z, LIU D M, et al. Fabrication, structure, and properties of Fe3O4@C encapsulated with YVO4:Eu3+composites[J].Journal of Nanoparticle Research, 2012, 14(4):9.
    [32] WANG Y S, LI N N, CUI B, et al. Multifunctionalγ-Fe2O3@Ca3(PO4)2@YPO4:Tb3+,Ce3+nanocomposites as a potential drug carrier[J]. Materials Chemistry and Physics, 2014, 146(3):330-336.
    [33] WU T, PAN H Y, CHEN R B, et al. Enhanced photoluminescence of Fe3O4@Y2O3:Eu3+bifunctional nanoparticles by the Gd3+co-doping[J].Journal of Alloys and Compounds, 2016, 666:507-512.
    [34] REN X Z, TONG L Z, CHEN X D, et al. Fe@C@Gd2O3:Eu3+magneticfluorescent composites:facile synthesis, structure and properties[J].Materials Chemistry and Physics, 2014, 143(3):939-945.
    [35] WU L, LIN Z Z, ZENG J, et al. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs[J]. Spectrochim Acta A:Mol Biomol Spectrosc, 2018, 196:117-122.
    [36] SONG E Q, HAN W Y, LI J R, et al. Magnetic-encoded fluorescent multifunctional nanospheres for simultaneous multicomponent analysis[J]. Analytical Chemistry, 2014, 86(19):9434-9442.
    [37]孙雅娟.稀土上转换纳米材料的合成、表征、机理和表面动力学研究[D].长春:吉林大学, 2007.SUN Yajuan. Synthesis, characterization, mechanism and surfacedynamics of rare-earth doped upconverting nanomaterials[D].Changchun:Jilin University, 2007
    [38]张幸林.稀土上转换纳米粒子的制备、表面修饰及其应用[D].南京:南京邮电大学, 2014.ZHANG Xinglin. Preparation, surface modification and applications of lanthanide-doped upconversion nanoparticles[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2014.
    [39] ABRAMS B L, HOLLOWAY P H. Role of the surface in luminescent processes[J]. Cheminform, 2005, 36(11):5783-5801.
    [40] BU W B, HUA Z L, CHEN H R, et al. Epitaxial synthesis of uniform cerium phosphate one-dimensional nanocable heterostructures with improved luminescence[J]. Journal of Physical Chemistry B, 2005, 109(30):14461-14464.
    [41] BAZIULYTE-PAULAVICIENE D, KARABANOVAS V, STASYS M,et al. Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4coreshell nanoparticles for possible application as multimodal contrast agents[J]. Beilstein Journal of Nanotechnology, 2017, 8:1815-1824.
    [42] YANG C Q, LI A J, GUO W, et al. Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb, Er/NaGdF4nanocomposites synthesized by a boiling water seed-mediated route[J].Frontiers of Materials Science, 2016, 10(1):38-44.
    [43] MA Z Y, LIU Y P, BAI L Y, et al. Folic acid-targeted magnetic Tbdoped CeF3fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging[J]. Dalton Transactions,2015, 44(37):16304-16312.
    [44] FELDMANN C, ROMING M, TRAMPERT K. Polyol-mediated synthesis of nanoscale CaF2and CaF2:Ce, Tb[J]. Small, 2006, 2(11):1248-1250.
    [45] PENG H X, CUI B, ZHAO W W, et al. Glycine-functionalized Fe3O4@TiO2:Er3+,Yb3+nanocarrierformicrowave-triggeredcontrollable drug release and study on mechanism of loading/release process using microcalorimetry[J]. Expert Opinion on Drug Delivery, 2015, 12(9):1397.
    [46] PENG H X, HU C Y, HU J L, et al. Fe3O4@ZnS@Glycine nanoparticle as a novel microwave stimulus controlled drug release system[J].Journal of Sol-Gel Science and Technology, 2016, 80(1):133-141.
    [47] SHEN M, JIA W P, LIN C P, et al. Facile synthesis of folateconjugated magnetic/fluorescent bifunctional microspheres[J].Nanoscale Research Letters, 2014, 9(1):558-558.
    [48] SUDIMACK J, LEE R J. Targeted drug delivery via the folate receptor[J]. Advanced Drug Delivery Reviews, 2002, 41(2):147-162.
    [49] JANG M, YOON Y I, KWON Y S, et al. Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer[J]. Korean Journal of Radiology, 2014, 15(4):411-422.
    [50] SAHU S, MOHAPATRA S. Multifunctional magnetic fluorescent hybrid nanoparticles as carriers for the hydrophobic anticancer drug5-fluorouracil[J]. Dalton Trans., 2013, 42(6):2224-2231.
    [51] YI Z G, REN G Z, RAO L, et al. Tunable multicolor upconversion luminescence and paramagnetic property of the lanthanide doped fluorescent/magnetic bi-function NaYbF4 microtubes[J]. Journal of Alloys and Compounds, 2014, 589:502-506.
    [52] ZHU H, TAO J, WANG W, et al. Magnetic, fluorescent, and thermoresponsive Fe3O4/rare earth incorporated poly(St-NIPAM)core-shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes[J]. Biomaterials, 2013, 34(9):2296-2306.
    [53] XIA T, MA Q, HU T, et al. A novel magnetic/photoluminescence bifunctional nanohybrid for the determination of trypsin[J]. Talanta,2017, 170:286-290.
    [54] LIU F, HE X, LEI Z, et al. Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy[J].Advanced Healthcare Materials, 2015, 4(4):559-68.
    [55] SHENG Y, LIU C, YUAN Y, et al. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and watersoluble chitosan[J]. Biomaterials, 2009, 30(12):2340-2348.
    [56] HUANG J, LIU H Q, MEN H F, et al. Molecularly imprinted polymer coating with fluorescence on magnetic particle[J]. Macromolecular Research, 2013, 21(9):1021-1028.
    [57] SHEN J, LI K, CHENG L, et al. Specific detection and simultaneously localized photothermal treatment of cancer cells using layer-by-layer assembled multifunctional nanoparticles[J]. ACS Applied Materials&Interfaces, 2014, 6(9):6443-6452.
    [58] LüY, YUE L, LI Q, et al. Recyclable(Fe3O4-NaYF4:Yb,Tm)@TiO2nanocomposites with near-infrared enhanced photocatalytic activity[J].Dalton Trans, 2018, 47(5):1666-1673.
    [59] QIU H J, CUI B, LI G M, et al. Novel Fe3O4@ZnO@mSiO2nanocarrier for targeted drug delivery and controllable release with microwave irradiation[J]. The Journal of Physical Chemistry C, 2014, 118(27):14929-14937.
    [60] SLOWING I I, TREWYN B G, GIRI S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications[J].Advanced Functional Materials, 2007, 17(8):1225-1236.
    [61] LI B, FAN H, ZHAO Q, et al. Synthesis, characterization and cytotoxicity of novel multifunctional Fe3O4@SiO2@GdVO4:Dy3+coreshell nanocomposite as a drug carrier[J]. Materials(Basel), 2016, 9(3):149.
    [62] PADMANABHAN P, KUMAR A, KUMAR S, et al. Nanoparticles in practice for molecular-imaging applications:an overview[J]. Acta Biomater, 2016, 41:1-16.
    [63] HUANG W Y, DAVIS J J. Multimodality and nanoparticles in medical imaging[J]. Dalton Trans, 2011, 40(23):6087-6103.
    [64] XIA Y, MATHAM M V, SU H, et al. Nanoparticulate contrast agents for multimodality molecular imaging[J]. Journal of Biomedical Nanotechnology, 2016, 12(8):1553.
    [65] MA D, MENG L, CHEN Y, et al. NaGdF4:Yb3+/Er3+@NaGdF4:Nd3+@Sodium-gluconate:multifunctional and biocompatible ultrasmall core-shell nanohybrids for UCL/MR/CT multimodal imaging[J]. ACS Applied Materials&Interfaces, 2015, 7(30):16257.
    [66] ZHANG F, KONG X Q, LI Q, et al. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging[J]. Talanta, 2016, 148(1958):108-115.
    [67] WANG X, LIU H, JUN R, et al. One-pot synthesis of Fe3O4@PS@P(AEMH-FITC)magnetic fluorescent nanocomposites for bimodal imaging[J]. Journal of Nanoscience&Nanotechnology, 2016, 16(3):2194.
    [68] WEI Z, WU Y, ZHAO Y, et al. Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging[J]. Analytica Chimica Acta, 2016, 938:156-164.
    [69] MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat. Mater., 2013, 12(11):991-1003.
    [70] YIN N Q, WU P, LIANG G, et al. A multifunctional mesoporous Fe3O4/SiO2/CdTe magnetic-fluorescent composite nanoprobe[J]. Applied Physics A, 2016, 122(3):243.
    [71] PENG H, CUI B, LI G, et al. A multifunctional beta-CD-modified Fe3O4@ZnO:Er3+, Yb3+nanocarrier for antitumor drug delivery and microwave-triggered drug release[J]. Materials Science&Engineering C-Materials for Biological Applications, 2015, 46:253-263.
    [72] JIANG W, CHEN B, WU J, et al. Synthesis and evaluation of thermosensitive, magnetic fluorescent nanocomposite as trifunctional drug delivery carrier[J]. Journal of Nanoscience and Nanotechnology, 2016,16(1):246-252.
    [73] XIA L Y, LI X L, ZHU F J, et al. Luminescent and magneticα-Fe2O3@Y2O3:Eu3+bifunctional hollow microspheres for drug delivery[J]. The Journal of Physical Chemistry C, 2017, 121(37):20279-20286.
    [74] KAFROUNI L, SAVADOGO O. Recent progress on magnetic nanoparticles for magnetic hyperthermia[J]. Prog. Biomater, 2016,5(3/4):147-160.
    [75] AKIMOTO J. Photodynamic therapy for malignant brain tumors[J].Neurol. Med. Chir.(Tokyo), 2016, 56(4):151-157.
    [76] PRASAD A I, PARCHU A K, JULURI R R, et al. Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles:hyperthermia application[J]. Dalton Transactions, 2013, 42(14):4885.
    [77] SINGH L P, SINGH N P, SRIVASTAVA S K. Terbium doped SnO2nanoparticles as white emitters and SnO2:5Tb/Fe3O4magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with Hela cancer cells[J]. Dalton Trans. 2015, 44(14):6457-6465.
    [78] HEIKHAM F D, THIYAM D S. Fabrication of spherical magnetoluminescent hybrid MnFe2O4@YPO4:5Eu3+nanoparticles for hyperthermia application[J]. Chemistryselect, 2017, 2(31):10010-10019.
    [79] PATEL K, RAJ B S, CHEN Y, et al. Novel folic acid conjugated Fe3O4-ZnO hybrid nanoparticles for targeted photodynamic therapy[J].Colloids Surf. B:Biointerfaces, 2017, 150:317-325.
    [80] DU B, NHAN S, ZHAO F, et al. A smart upconversion-based lighttriggered polymer for synergetic chemo-photodynamic therapy and dual-modal MR/UCL imaging[J]. Nanomedicine, 2016, 12(7):2071-2080.
    [81] SOHAIL A, AHMAD Z, BEG O A, et al. A review on hyperthermia via nanoparticle-mediated therapy[J]. Bull Cancer, 2017, 104(5):452-461.
    [82] DI C R, BEALLE G, KOLOSNJAJTABI J, et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes[J]. ACS Nano, 2015, 9(3):2904-2916.
    [83] BANERJEE T, SULTHANA S, SHELBY T, et al. Multiparametric magneto-fluorescent nanosensors for the ultrasensitive detection of escherichia coli O157:H7[J]. ACS Infect. Dis., 2016, 2(10):667-673.
    [84] WANG M, ZHENG K Y, LV S W, et al. Preparation and characterization of universal Fe3O4@SiO2/CdTe nanocomposites for rapid and facile detection and separation of membrane proteins[J]. New Journal of Chemistry, 2018, 42(7):4981-4990.
    [85] LI J, WANG Q, GUO Z, et al. Highly selective fluorescent chemosensor for detection of Fe3+based on Fe3O4@ZnO[J]. Sci. Rep.,2016, 6:23558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700