耦合相变储热的金属氢化物反应器吸氢过程模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation on hydrogen absorption process of metal hydride based hydrogen storage reactor coupled with phase-change thermal storage
  • 作者:尧兢 ; 朱鹏飞 ; 任佳伟 ; 吴震
  • 英文作者:Jing YAO;Pengfei ZHU;Jiawei REN;Zhen WU;School of Chemical Engineering and Technology,Xi'an Jiaotong University;
  • 关键词:相变材料 ; 金属氢化物反应器 ; 数值模拟 ; 储氢性能 ; 参数优化
  • 英文关键词:phase change material;;metal hydride reactor;;numerical simulation;;hydrogen storage;;parameter optimization
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:西安交通大学化学工程与技术学院;
  • 出版日期:2018-07-12 11:46
  • 出版单位:过程工程学报
  • 年:2018
  • 期:v.18
  • 基金:国家自然科学基金资助项目(编号:51506174);; 中国博士后科学基金特别资助项目(编号:2016T90913);; 陕西省自然科学基金资助项目(编号:2017JQ5059)
  • 语种:中文;
  • 页:HGYJ201805027
  • 页数:9
  • CN:05
  • ISSN:11-4541/TQ
  • 分类号:208-216
摘要
基于金属氢化物储氢反应,建立了相变材料蓄热的固体储氢反应器模型,模拟研究了吸氢压力等操作参数及相变材料的相变温度、固(液)态导热系数、相变潜热等物性参数对固体储氢反应器工作过程的影响.结果表明,相变材料的固态导热系数和相变潜热对固体储氢反应器性能的影响较小,相变温度和液态导热系数对反应器性能影响较大.相变温度越低,液态导热系数越大,储氢反应器性能越好.在使用最优的相变材料储能时,提高充入氢气的压力可加快反应速率,强化相变材料的传热,有助于进一步优化反应器的储氢性能.
        A transient two-dimensional mathematical model of solid-state hydrogen storage reactor coupled with phase-change material(PCM) as heat exchanger was developed on the basis of metal hydride hydrogen absorption reactions. The influences of the operating and thermophysical parameters, including the initial hydrogen pressure, the PCM melting temperature, PCM solid(liquid) thermal conductivity and melting enthalpy, on the hydrogen absorption performances of the reactor were further investigated. The simulation results showed that different thermophysical parameters of PCM affect the reactor performance in varying degrees.The influences of the PCM solid thermal conductivity and melting enthalpy on the hydrogen absorption behavior of the reactor were small, while the PCM melting temperature and liquid thermal conductivity had a great impact on the hydrogen absorption process. It was found that the hydrogen storage reactor presented an improved hydrogen absorption behavior when the PCM melting temperature was reduced or the PCM liquid thermal conductivity becomes large. This is because that both the reduction of the PCM melting temperature and the increase of the PCM liquid thermal conductivity help to enhance the heat transfer between metal hydride and PCM, thus facilitating the hydrogen absorption reaction in the reactor. By contrast, the larger PCM solid thermal conductivity only accelerates the temperature rise process of the PCM and has few influences on the hydrogen absorption reaction of metal hydride. Besides the thermophysical parameters of PCM, the operating parameter such as hydrogen pressure also presents a great impact on the reactor performance. Improving the hydrogen pressure under the conditions of the optimized PCM thermophysical properties contributes to the improvement of the reaction rate, which subsequently enhances the heat transfer between metal hydride and PCM. Through the parametric analyses, the key affecting parameters and their optimization strategy are obtained for the metal hydride reactor coupled with the PCM as heat exchanger, which is significant and valuable for the development of advanced hydrogen storage reactors.
引文
[1]梁慧.日本氢能源技术发展战略及启示[J].国际石油经济,2016,24(8):87-95.Liang H.The development strategy of Japan’s hydrogen energy technology and its enlightenment[J].International Petroleum Economics,2016,24(8):87-95.
    [2]许炜,陶占良,陈军.储氢研究进展[J].化学进展,2006,18(2):200-210.Xu W,Tao Z L,Chen J.Progress of research on hydrogen storage[J].Progress in Chemistry,2006,18(2):200-210.
    [3]郭浩,杨洪海.固体储氢材料的研究现状及发展趋势[J].化工新型材料,2016,(9):19-21.Guo H,Yang H H.Current status and future prospect of research on solid-state hydrogen storage material[J].New Chemical Materials,2016,(9):19-21.
    [4]黄明宇,冯小保,厉丹彤,等.车载储氢技术的发展现状及展望[J].现代化工,2013,33(7):1-5.Huang M Y,Feng X B,Li D T,et al.Development status and prospect of onboard hydrogen storage technology[J].Modern Chemical Industry,2013,33(7):1-5.
    [5]陈军,朱敏.高容量储氢材料的研究进展[J].中国材料进展,2009,28(5):2-10.Chen J,Zhu M.Progress in research of hydrogen storage materials with high capacity[J].Materials China,2009,28(5):2-10.
    [6]邵玉艳,尹鸽平,高云智.氢经济面临的机遇与挑战[J].电源技术,2005,29(6):410-415.Shao Y Y,Yin G P,Gao Y Z.Opportunities and challenges for hydrogen economy[J].Chinese Journal of Power Sources,2005,29(6):410-415.
    [7]徐丽,马光,盛鹏,等.储氢技术综述及在氢储能中的应用展望[J].智能电网,2016,4(2):166-171.Xu L,Ma G,Sheng P,et al.Overview of hydrogen storage technologies and their application prospects in hydrogen-based energy storage[J].Smart Grid,2016,4(2):166-171.
    [8]Mazzucco A,Dornheim M,Sloth M,et al.Bed geometries,fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications:a review[J].Int.J.Hydrogen Energy,2014,39(30):17054-17074.
    [9]Shafiee S,McCay M.Different reactor and heat exchanger configurations for metal hydride hydrogen storage systems:a review[J].Int.J.Hydrogen Energy,2016,41(22):9462-9470.
    [10]Raju M,Kumar S.Optimization of heat exchanger designs in metal hydride based hydrogen storage systems[J].Int.J.Hydrogen Energy,2012,37(3):2767-2778.
    [11]Ma J C,Wang Y Q,Shi S F,et al.Optimization of heat transfer device and analysis of heat&mass transfer on the finned multi-tubular metal hydride tank[J].Int.J.Hydrogen Energy,2014,39(25):13583-13595.
    [12]Yan M Y,Sun F,Liu X P,et al.Effects of graphite content and compaction pressure on hydrogen desorption properties of Mg(NH2)2-2Li H based tank[J].J.Alloys Compd.,2015,628:63-67.
    [13]Chung C A,Yang S W,Yang C Y,et al.Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer[J].Appl.Energy,2013,103:581-587.
    [14]鲍泽威,杨福胜,吴震,等.金属氢化物反应器内吸氢过程热质传递特性的多物理场分析[J].西安交通大学学报,2012,46(9):49-54.Bao Z W,Yang F S,Wu Z,et al.Analysis on heat and mass transfer characteristics of mental hydride reactors during adsorption[J].Journal of Xi'an Jiaotong University,2012,46(9):49-54.
    [15]Weckerle C,Burger I,Linder M.Novel reactor design for metal hydride cooling systems[J].Int.J.Hydrogen Energy,2017,42(12):8063-8074.
    [16]孙建强,张仁元.金属相变储能与技术的研究与发展[J].材料导报,2005,19(8):99-101.Sun J Q,Zhang R Y.Review of thermal energy storage with metal phase change materials[J].Materials Review,2005,19(8):99-101.
    [17]Zanganeh G,Commerford M,Haselbacher A,et al.Stabilization of the outflow temperature of a packed-bed thermal energy storage by combining rocks with phase change materials[J].Appl.Therm.Eng.,2014,70(1):316-320.
    [18]Borreguero A M,Garrido I,Valverde J L,et al.Development of smart gypsum composites by incorporating thermoregulating microcapsules[J].Energy and Build.,2014,76(2):631-639.
    [19]Garrier S,Delhomme B,de Rango P,et al.A new MgH2 tank concept using a phase-change material to store the heat of reaction[J].Int.J.Hydrogen Energy,2013,38(23):9766-9771.
    [20]MacDonald B D,Rowe A M.Impacts of external heat transfer enhancements on metal hydride storage tanks[J].Int.J.Hydrogen Energy,2006,31(12):1721-1731.
    [21]Wang Y Q,Yang F S,Meng X Y,et al.Simulation study on the reaction process based single stage metal hydride thermal compressor[J].Int.J.Hydrogen Energy,2010,35(1):321-328.
    [22]Tatsidjodoung P,Pierres N L,Luo L.A review of potential materials for thermal energy storage in building applications[J].Renewable Sustainable Energy Rev.,2013,18:327-349.
    [23]Tao Y B,He Y L.Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube[J].Appl.Energy,2015,143:38-46
    [24]Chaise A,Marty P,de Rango P,et al.A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor[J].Int.J.Heat Mass Transfer,2009,52:4564-4572.
    [25]Nam J,Ko J,Ju H.Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels[J].Appl.Energy,2012,89:164-175.
    [26]Jemni A,Nasrallah S B,Lamloumi J.Experimental and theoretical study of a metal-hydrogen reactor[J].Int.J.Hydrogen Energy,1999,24(7):631-644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700