高面积容量锂-硫化聚丙烯腈电池的快速界面传输
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Fast Interfacial Transport in Lithium-sulfurized Polyacrylonitrile Battery with High Areal Capacity
  • 作者:张泽平 ; 黄兰萍 ; 陈康华 ; 帅毅
  • 英文作者:Zhang Zeping;Huang Lanping;Chen Kanghua;Shuai Yi;Powder Metallurgy Research Institute,Central South University;Light Alloy Metal Research Institute,Central South University;
  • 关键词:表面改性 ; 锂金属阳极 ; 硫化聚丙烯腈
  • 英文关键词:surface modification;;Lithium metal anode;;sulfurized polyacrylonitrile
  • 中文刊名:SDHG
  • 英文刊名:Shandong Chemical Industry
  • 机构:中南大学粉末冶金研究院;中南大学轻质高强结构材料国防科技重点实验室;
  • 出版日期:2019-05-08
  • 出版单位:山东化工
  • 年:2019
  • 期:v.48;No.355
  • 基金:国家重点研发计划(2016YFB0300801);; 国家自然科学基金重大科研仪器设备研制专项(51327902)
  • 语种:中文;
  • 页:SDHG201909007
  • 页数:4
  • CN:09
  • ISSN:37-1212/TQ
  • 分类号:32-34+38
摘要
锂硫电池由于具有较高的理论比能量和环保性能,已成为最有前途的高比能电池系统之一。然而,锂金属阳极在锂硫电池中的实际应用仍有阻碍。本文设计了一种简单的方法在锂阳极上制备锂硅/氯杂化保护层,该保护层不仅能对锂枝晶生长起到抑制作用,还为电荷的快速转移提供了动能。由于硫化聚丙烯腈的高导电性和改性锂阳极的高交换电流密度,使得锂-硫化聚丙烯腈电池能够保持稳定的充放电循环,并表现出优异的倍率性能。即使阴极有8 mAh/cm~2的高面积容量,电池也可以在0.2C时以500 mAh/g的比容量保持50次以上的循环。
        Lithium-sulfur battery has become one of the most promising high-specific energy battery systems due to their high theoretical specific energy and environmental protection.However,the lithium metal anode's practical application in Li-S battery is limited by dendrite growth issue.In this paper,a simple method is designed to manufacture a lithium silicon/chloride hybrid protect layer on the lithium anode,which not only inhibit the dendrite growth,but also provide a fast charge-transfer kinetic.Due to the high electrical conductivity of sulfurized polyacrylonitrile and the high exchange current densities of modified lithium anode,lithium-sulfurized polyacrylonitrile battery can keep a stable charge/discharge cycling,and exhibit an excellent rate performance.Even with the high areal capacity of 8 mAh/cm~2,the cell also can provide 500 mAh/g over 50 cycles at 0.2 C.Such facile method of lithium surface protection has positive significance to the industrial application of lithium sulfur battery.
引文
[1]Zhao H J,Deng N P,Yan J,et al.A review on anode for lithium-sulfur batteries:Progress and prospects[J].Chem Eng J,2018,347:343-365.
    [2]Qian J F,Henderson W A,Xu W,et al.High rate and stable cycling of lithium metal anode[J].Nat Commun,2015,6:6362.
    [3]Xu W,Wang J L,Ding F,et al.Lithium metal anodes for rechargeable batteries[J].Energy Environ Sci,2014,7:513.
    [4]Yan K,Lee H W,Gao T,et al.Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode[J].Nano Lett,2014,14:6016-6022.
    [5]Zhang X Q,Chen X,Xu R,et al.Columnar lithium metal anodes[J].Angew Chem Int Ed,2017,56:14207-14211.
    [6]Wenzel S,Weber D A,Leichtweiss T,et al.Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J].Solid State Ion,2016,286:24-33.
    [7]Cheng X B,Zhang Q.Growth mechanisms and suppression strategies of lithium metal dendrites[J].Prog Chem,2018,30(1):51-72.
    [8]Liang X,Pang Q,Kochetkov I R,et al.A facile surface chemistry route to a stabilized lithium metal anode[J].Nat Energy,2017,2:17119.
    [9]Jin J S,Park H W,Park J Y,et al.Effect of electrode design on electrochemical performance of all-solid state lithium secondary batteries using lithium-silicide anodes[J].Electrochimica Acta,2015,185:242-249.
    [10]Wang M,Xiao X R,Huang X S,et al.A multiphysics microstructure-resolved model for silicon anode lithium-ion batteries[J].J Power Sources,2017,348:66-79.
    [11]Shuai Y,He X,Zhang Z P.A highly reversible and low-cost sulfur-graphite dual-ion battery[J/OL].Energy Technology,2018-07-29.https://doi.org/10.1002/ente.201800729.
    [12]Zhao Q,Tu Z,Wei S,et al.Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries[J].Angewandte Chemie International Edition,2017,57(4):992-996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700