周丛生物存在下不同水层氧化还原带的分布及其与微生物的关联
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution of Redox Zone at Different Water Layers in the Presence of Periphyton and the Responsible Microorganisms
  • 作者:王逢武 ; 刘玮 ; 万娟娟 ; 杨嘉利 ; 刘雪梅 ; 向速林 ; 吴永红
  • 英文作者:WANG Feng-wu;LIU Wei;WAN Juan-juan;YANG Jia-li;LIU Xue-mei;XIANG Su-lin;WU Yong-hong;Department of Environment Engineering,East China Jiaotong University;Institute of Soil Science,Chinese Academy of Sciences;College of Forestry Resource and Environment, Nanjing Forestry University;
  • 关键词:周丛生物 ; 氧化还原带 ; 电子受体 ; 微生物 ; 水质净化
  • 英文关键词:periphyton;;redox zones;;electron acceptors;;microorganisms;;water purification
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:华东交通大学环境工程系;中国科学院南京土壤研究所;南京林业大学生物与环境学院;
  • 出版日期:2015-10-27 11:21
  • 出版单位:环境科学
  • 年:2015
  • 期:v.36
  • 基金:国家自然科学基金优秀青年科学基金项目(41422111)
  • 语种:中文;
  • 页:HJKZ201511013
  • 页数:8
  • CN:11
  • ISSN:11-1895/X
  • 分类号:111-118
摘要
目前人工水草、弹性填料等多种载体广泛用于地表水体净化,通过载体表面富集的周丛生物去除污染物达到净化效果.尤其在周丛生物存在情况下,不同水层的氧化还原带分布情况与污染物的去除有着直接或间接的关系,因此,研究周丛生物存在下不同水层氧化还原带的分布及其微生物特征具有重要的实际意义.在模拟的水柱装置中,加入玄武湖采集的富营养化水,再悬挂弹性填料富集周丛生物,待周丛生物生长达到稳定期之后,监测不同水层氧化还原因子及其微生物.结果表明,周丛生物作用下,水柱中不同水层自上而下依次出现5条氧化还原带,周丛生物在每个带所利用的最终电子受体分别为O2、NO-3、Fe3+、CO2和SO2-4,依次称为氧还原带、NO-3还原带、铁还原带、产甲烷带和SO2-4还原带;各带的标志性物质DO、NO-2、Fe2+、HCO-3和硫化物的最高值分别为11.290、4.950、38.326、120.000和12.180 mg·L-1.通过Biolog技术监测微生物特征显示:不同水层对应的周丛生物其组成、代谢活性、碳源利用能力存在显著差异,由此造成了不同水层氧化还原带的分布.不同水层氧化还原带分布及其微生物特征的研究,为揭示周丛生物净化不同深度水体水质提供了科学解释,也为发展高效的基于周丛生物净化水质的技术提供了理论依据.
        So far,many types of carriers( such as artificial mat,industrial soft carriers) have been widely used in removing pollutants,purifying water quality via the periphyton attached on the surface of these carriers. In the presence of periphyton,the distribution of redox zone at different water layers is directly or indirectly associated with the removal rate of pollutants. Therefore,it is more practically significant to study the distribution of redox zone at different water layers and the microbial diversity in the presence of periphyton. In this study,the pilot experiment was performed in a simulated water column bioreactor. Firstly,the eutrophic water collected from Xuan Wu Lake was added into the simulated water column bioreactor. The industrial soft carriers were then suspended into the water column in order to enhance the growth of periphyton. After periphyton gained a steady growth state,the oxidation reduction zones( redox zones) and the responsible microorganisms at different water layers were monitored. The results showed that five sequent redox zones( i. e. oxygen reduction, nitrate reduction, iron reduction, methanogenic and sulfate reduction zones,respectively) appeared in different water layers from top-down in the presence of periphyton and their responsible terminal electron acceptors were O2,NO-3,Fe3 +,CO2 and SO2-4respectively. The indicators of the different zones were DO,NO-2,Fe2 +,HCO-3and sulfide,and the highest concentrations were 11. 290 mg·L- 1,4. 950 mg·L- 1,38. 326 mg·L- 1,120. 000 mg·L- 1and 12. 180mg·L- 1,respectively. The results of microbiological characteristics tested by Biolog Eco PlateTMtechnology revealed that there were significant differences in the composition,metabolic activity,carbon utilization of periphyton at different water layers,causing the difference in the distribution of redox zones at different water layers. These findings implies that study on the distribution of redox zones and microbiological characteristics in the presence of periphyton provides a better understanding that periphyton is capable of improving water quality at different layer,and also provides some theoretical basis for the development of technology for purifying water quality based on periphyton.
引文
[1]金苗,任泽,史建鹏,等.太湖水体富营养化中农业面污染源的影响研究[J].环境科学与技术,2010,33(10):106-109,119.
    [2]宋姣,周洲,傅大放,等.三种新型浮床载体对微污染水体中氮的去除效果研究[J].安全与环境工程,2013,20(5):67-73.
    [3]张劲,黄薇,桑连海.浮床植物水质净化能力及其影响因素研究[J].长江科学院院报,2011,28(12):39-42.
    [4]Christensen T H,Bjerg P L,Banwart S A,et al.Characterization of redox conditions in groundwater contaminant plumes[J].Journal of Contaminant Hydrology,2000,45(3-4):165-241.
    [5]Brun A,Engesgaard P.Modelling of transport and biogeochemical processes in pollution plumes:literature review and model development[J].Journal of Hydrology,2002,256(3-4):211-227.
    [6]Lnborg M J,Engesgaard P,Bjerg P L,et al.A steady state redox zone approach for modeling the transport and degradation of xenobiotic organic compounds from a landfill site[J].Journal of Contaminant Hydrology,2006,87(3-4):191-210.
    [7]董军,赵勇胜,王翊虹,等.渗滤液污染羽中沉积物氧化还原缓冲能力研究[J].环境科学,2007,27(12):2558-2563.
    [8]秦传玉,赵勇胜,郑苇,等.空气扰动技术对地下水中氯苯污染晕的控制及去除效果[J].吉林大学学报(地球科学版),2010,40(1):164-168.
    [9]董军,赵勇胜,韩融,等.垃圾渗滤液污染羽在地下环境中的分带现象研究[J].环境科学,2006,27(9):1901-1905.
    [10]刘建康.高级水生生物学[M].北京:科学出版社,1999.
    [11]Golladay S,Sinsabaugh R L.Biofilm development on leaf and wood surfaces in a boreal river[J].Freshwater Biology,1991,25(3):437-450.
    [12]Lorite G S,Rodrigues C M,De Souza A A,et al.The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution[J].Journal of Colloid and Interface Science,2011,359(1):289-295.
    [13]Coenye T,De Prijck K,De Wever B,et al.Use of the modified Robbins device to study the in vitro biofilm removal efficacy of Nitr AdineTM,a novel disinfecting formula for the maintenance of oral medical devices[J].Journal of Applied Microbiology,2008,105(3):733-740.
    [14]Wu Y H,Liu J T,Yang L Z,et al.Allelopathic control of cyanobacterial blooms by periphyton biofilms[J].Environmental Microbiology,2011,13(3):604-615.
    [15]Castro M C R,Urrea G,Guasch H.Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity[J].Science of the Total Environment,2015,503-504:122-132.
    [16]Likens G E.Encyclopedia of inland waters[M].New York:Academic Press,2009.
    [17]陆海鹰,陈建贞,李运东,等.磷在“沉积物-自然生物膜-上覆水”三相体系中的迁移转化[J].湖泊科学,2014,26(4):497-504.
    [18]Mc Cormick P V,Shuford R B E,Chimney M J.Periphyton as a potential phosphorus sink in the Everglades Nutrient Removal Project[J].Ecological Engineering,2006,27(4):279-289.
    [19]Du B W,Haddad S P,Scott W C,et al.Pharmaceutical bioaccumulation by periphyton and snails in an effluentdependent stream during an extreme drought[J].Chemosphere,2015,119:927-934.
    [20]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [21]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.10.
    [22]Lu H Y,Yang L Z,Zhang S Q,et al.The behavior of organic phosphorus under non-point source wastewater in the presence of phototrophic periphyton[J].PLo S One,2014,9(1):e85910.
    [23]Li T L,Bo L J,Yang F,et al.Comparison of the removal of COD by a hybrid bioreactor at low and room temperature and the associated microbial characteristics[J].Bioresource Technology,2012,108:28-34.
    [24]Davey M E,O'toole G A.Microbial biofilms:from ecology to molecular genetics[J].Microbiology and Molecular Biology Reviews,2000,64(4):847-867.
    [25]Garland J L,Mills A L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environmental Microbiology,1991,57(8):2351-2359.
    [26]Winding A,Ronn R,Hendriksen N B.Bacteria and protozoa in soil microhabitats as affected by earthworms[J].Biology and Fertility Soils,1997,24(2):133-140.
    [27]Wu Y H,Li T L,Yang L Z.Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates:a review[J].Bioresource Technology,2012,107:10-18.
    [28]Wu Y H,Xia L Z,Yu Z Q,et al.In situ bioremediation of surface waters by periphytons[J].Bioresource Technology,2014,151:367-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700