铜基催化剂的失活再生研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in deactivation and regeneration of Cu based catalysts
  • 作者:张卿源 ; 舒静
  • 英文作者:ZHANG Qingyuan;SHU Jing;Chemistry and Chemical Engineering college,Northeast Petroleum University;
  • 关键词:铜基催化剂 ; 烧结 ; 积碳 ; 失活研究
  • 英文关键词:Copper based catalyst;;Sintering;;Carbon deposition;;Deactivation study
  • 中文刊名:JKGH
  • 英文刊名:Science & Technology in Chemical Industry
  • 机构:东北石油大学化学化工学院;
  • 出版日期:2019-03-04 10:52
  • 出版单位:化工科技
  • 年:2019
  • 期:v.27
  • 基金:国家自然科学基金资助项目(51702044)
  • 语种:中文;
  • 页:JKGH201903016
  • 页数:5
  • CN:03
  • ISSN:22-1268/TQ
  • 分类号:71-75
摘要
综述铜基催化剂的主要合成方法,对其重要的工业应用包含合成气制甲醇、甘油氢解和草酸二甲酯加氢反应,分析其具体失活原因多为烧结、中毒与积碳。针对烧结失活的主要措施为掺合杂原子、选择金属氧化物做载体及通过载体结构限制铜原子的迁移。而针对积碳与中毒的主要措施为减少毒性物质与催化剂的接触;根据积碳与毒性物质产生的条件与路径,消除积碳与毒性物质来源;失活催化剂再生处理。
        The main synthesis methods of copper-based catalysts are reviewed.The important industrial applications of copper-based catalysts include synthesis of methanol from syngas,hydrogenation of glycerol and dimethyl oxalate.The reasons for their deactivation are mainly sintering,poisoning and carbon deposition.The main measures for sintering deactivation are as follows:doping hetero atoms;selecting metal oxides as carriers;limiting the migration of copper atoms through carrier structure.The main measures for carbon deposition and poisoning are to reduce the contact between toxic substances and catalysts,to eliminate the sources of carbon deposits and toxic substances according to the conditions and paths of carbon deposition and toxic substances production,and to regenerate the deactivated catalysts.
引文
[1] MORRIS D ARGYLE,CALVIN H BARTHOLOMEW.Heterogeneous catalyst deactivation and regeneration:A review[J].Catalysts,2015,5(1):145-269.
    [2] YE R P,LIN L,CHEN C C.Synthesis of robust MOF-derived Cu/SiO2 catalyst with low copper loading via sol-gel method for the dimethyl oxalate hydrogenation reaction[J].ACS Catalysis,2018,8(4):3382-3394.
    [3] LAMBERT STEPHANIE,CELLIER CAROLINE,FERAUCHE FABRICE.On the structure-sensitivity of 2-butanol dehydrogenation over Cu/SiO2 cogelled xerogel catalysts[J].Catalysis Communications,2007,8(12):2032-2036.
    [4] CHEN L F,GUO P J,QIAO M H.Cu/SiO2 catalysts prepared by the ammonia-evaporation method:Texture,structure,and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J].Journal of Catalysis,2008,257(1):172-180.
    [5] GERAVAND ELHAM,SHARIATINIA ZAHRA,YARIPOUR FEREYDOON.Synthesis of copper-silica nanosized catalysts for 2-butanol dehydrogenation and optimization of preparation parameters by response surface method[J].Chemical Engineering Research and Design,2015,96:63-77.
    [6] JULIAN SCHITTKOWSKI,HOLGER RULAND,DANIEL LAUDENSCHLEGER.Methanol synthesis from steel mill exhaust gases:Challenges for the industrial Cu/ZnO/Al2O3 catalyst[J].Chemie Ingenieur Technik,2018,90(10):1419-1429.
    [7] MARCIO JOSE DA SILVA.Synthesis of methanol from methane:Challenges and advances on the multi-step(syngas) and one-step routes(DMTM)[J].Fuel Processing Technology,2016,145:42-61.
    [8] GIULIA BOZZANO,FLAVIO MANENTI.Efficient methanol synthesis:Perspectives,technologies and optimization strategies[J].Progress in Energy and Combustion Science,2016,56:71-105.
    [9] MENEIL,SCHACK C J,RINKER R G.Methanol synthesis from hydrogen,carbon monoxide and carbon dioxide over a CuO/ZnO/Al2O3 catalyst[J].Applied Catalysis,1989,50(1):247-263.
    [10] LIU G,WILLCOX D,GARLAND M.The role of CO2 in methanol synthesis on Cu-Zn oxide:An isotope labeling study[J].Journal of Catalysis,1985,96:251-260.
    [11] MENEIL M A,SCHACK C J,RINKER R G.Methanol synthesis from hydrogen,carbon monoxide and carbon dioxide over a CuO/ZnO/Al2O3 catalyst:Ⅱ.Development of a phenomenological rate expression[J].Appl Catal,1989,50:265-285.
    [12] GRAAF G H,STAMHUIS E J.BEENACKERS A.Kinetics of low-pressure methanol synthesis[J].Chem Eng Sci,1988,43:3185-3195.
    [13] CHINCHEN G C,DENNY P J,JENNINGS J R.Synthesis of methanol:Part 1.Catalysts and kinetics[J].Applied Catalysis,1988,36(1/2):1-65.
    [14] KUNG H H.Deactivation of methanol synthesis catalysts-A review[J].Catalysis Today,1992,11(4):443-453.
    [15] SUN J T,METCALFE I S,SAHIBZADA M.Deactivation of Cu/ZnO/Al2O3 methanol synthesis catalyst by sintering[J].Industrial & Engineering Chemistry Research,1999,38(10):3868-3872.
    [16] LADEBECK J.Improve methanol synthesis[J].Hydrocarbon Process,1993,72(3):89-91.
    [17] SAHIBZADA M,METCALFE I S,CHADWICK D.Methanol synthesis from CO2/H2 over Pd promoted Cu/ZnO/Al2O3 catalysts[J].Studies in Surface Science & Catalysis,1997,107(97):29-34.
    [18] NONNEMAN L E Y,PONEC V.On the problem of the activity in methanol synthesis of supported,unpromoted copper catalysts[J].Catalysis Letters,1990,7(1):213-217.
    [19] NANDA M R,YUAN Z,QIN W.Recent advancements in catalytic conversion of glycerol into propylene glycol:A review[J].Catalysis Reviews,2016,58(3):28.
    [20] BIENHOLZ A,SCHWAB F,CLAUS P.Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxalate gel method:Influence of solvent and reaction temperature on catalyst deactivation[J].Green Chemistry,2010,12(2):290-295.
    [21] VASILIADOU E S,EGGENHUISEN T M,MUNNIK P.Synthesis and performance of highly dispersed Cu/SiO2 catalysts for the hydrogenolysis of glycerol[J].Applied Catalysis B Environmental,2014,145(1):108-119.
    [22] PANYAD S,JONGPATIWUT S,SREETHAWONG T.Catalytic dehydroxylation of glycerol to propylene glycol over Cu-ZnO/Al2O3 catalysts:Effects of catalyst preparation and deactivation[J].Catalysis Today,2011,174(1):59-64.
    [23] WAWRZETZ A,PENG B,HRABAR A.Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol[J].Journal of Catalysis,2010,269(2):411-420.
    [24] WANG C,JIANG H,CHEN C.A submerged catalysis/membrane filtration system for hydrogenolysis of glycerol to 1,2-propanediol over Cu-ZnO catalyst[J].Journal of Membrane Science,2015,489:135-143.
    [25] MALLESHAMA B,SUDARSANAMB P,REDDYA B V S.Development of cerium promoted copper-magnesium catalysts for biomass valorization:Selective hydrogenolysis of bioglycerol[J].Applied Catalysis B Environmental,2016,181:47-57.
    [26] SALAZAR J B,FALCONE D D,PHAM H N.Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetallic Ru-Cu nanoparticles supported on TiO2[J].Applied Catalysis A General,2014,482(28):137-144.
    [27] WANG C,JIANG H,CHEN C.Solvent effect on hydrogenolysis of glycerol to 1,2-propanediol over Cu-ZnO catalyst[J].Chemical Engineering Journal,2015,264:344-350.
    [28] HE L,CHENG H,LIANG G.Effect of structure of CuO/ZnO/Al2O3 composites on catalytic performance for hydrogenation of fatty acid ester[J].Applied Catalysis A:General,2013,452:88-93.
    [29] ZHU S H,ZHU Y L.Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol;Hydrogenolysis to 1,2-propanediol[J].Journal of Catalysis,2013,303(7):70-79.
    [30] YUE H,MA X,GONG J.An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol[J].Accounts of Chemical Research,2014,47(5):1483-1492.
    [31] ZHENG J,ZHOU J,LIN H.CO-mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol[J].The Journal of Physical Chemistry C,2015,119(24):13758-13766.
    [32] WEN C,CUI Y,DAI W L.Solvent feedstock effect:The insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol[J].Chemical Communications,2013,49(45):5195-5197.
    [33] WANG B,CUI Y Y,WEN C.Role of copper content and calcination temperature in the structural evolution and catalytic performance of Cu/P25 catalysts in the selective hydrogenation of dimethyl oxalate[J].Applied Catalysis A General,2016,509:66-74.
    [34] WEN C,LI F,CUI Y.Investigation of the structural evolution and catalytic performance of the CuZnAl catalysts in the hydrogenation of dimethyl oxalate to ethylene glycol[J].Catalysis Today,2014,233:117-126.
    [35] HAN L P,ZHANG L,ZHAO G F.Copper-fiber-structured Pd-Au-CuOx:Preparation and catalytic performance in the vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J].Chem Cat Chem,2016,8(6):1065-1073.
    [36] ARGYLE M D,BARTHOLOMEW C H.Heterogeneous catalyst deactivation and regeneration:A review[J].Catalysts,2015,5(1):145-269.
    [37] ARUNARKAVALLI T,KULKARNI G U,RAO C N R.An EXAFS study of Cu/ZnO and Cu/ZnO-Al2O3 methanol synthesis catalysts[J].Catalysis Letters,1993,20(3/4):259-268.
    [38] QI W,LING Q,DING D.Performance enhancement of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol through zinc incorporation[J].Catalysis Communications,2018,17:68-72.
    [39] DING J,LIU Y,ZHANG J.The excellent performance in hydrogenation of esters over Cu/ZrO2 catalyst prepared by bio-derived salicylic acid[J].Catalysis Science & Technology,2016,6(19):7220-7230.
    [40] YUE H,ZHAO Y,ZHAO S.A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions[J].Nature Communications,2013,4:2339.
    [41] ZHAO Y J,GUO Z Y.Hydrogenation of diesters on copper catalyst anchored on ordered hierarchical porous silica:Pore size effect[J].Journal of Catalysis,2018,357:223.
    [42] BUSSCHE K M V,FROMENT G F.A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst[J].Journal of Catalysis,1996,161(1):1-10.
    [43] BAI G,WANG Y,LI F.Influence of acid-base properties of the support on copper-based catalysts for catalytic dehydrogenation of 2-butanol[J].Catalysis Letters,2013,143(1):101-107.
    [44] HE Z,LIN H,HE P.Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J].Journal of Catalysis,2011,277(1):54-63.
    [45] MEYER C I,MARCHI A J,MONZON A.Deactivation and regeneration of Cu/SiO2 catalyst in the hydrogenation of maleic anhydride.Kinetic modeling[J].Applied Catalysis A General,2009,367(1):122-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700