考虑风场、雷雨区的下一代客机轨迹多目标优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-objective Optimization of Next Gen Transport Trajectory Considering Wind Field and Thunderstorm Area
  • 作者:王宇 ; 杨振博 ; 余雄庆 ; 柴啸
  • 英文作者:WANG Yu;YANG Zhen-bo;YU Xiong-qing;CHAI Xiao;Key Laboratory of Fundamental Science for National Defense-advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics;Aircraft Maintenance Engineering College,Guangzhou Civil Aviation College;Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China Ltd.;
  • 关键词:轨迹优化 ; 经济性 ; 环保性 ; 排放量 ; 风场
  • 英文关键词:trajectory optimization;;economy;;environmental impact;;emission;;wind field
  • 中文刊名:HKJJ
  • 英文刊名:Aeronautical Computing Technique
  • 机构:南京航空航天大学飞行器先进设计技术国防重点学科实验室;广州民航职业技术学院飞机维修工程学院;中国商用飞机有限责任公司上海飞机设计研究院;
  • 出版日期:2019-03-25
  • 出版单位:航空计算技术
  • 年:2019
  • 期:v.49;No.209
  • 基金:国家自然科学基金项目资助(11602103);; 江苏省高校优势学科建设工程基金项目资助
  • 语种:中文;
  • 页:HKJJ201902005
  • 页数:5
  • CN:02
  • ISSN:61-1276/TP
  • 分类号:23-27
摘要
在考虑风场和雷雨区对民航客机飞行影响的情况下,针对提高客机飞行经济性和降低环境污染的问题,基于"下一代航空运输系统"的连续性飞行剖面,建立纵向飞行轨迹模型,并综合经济性和环保性两类目标,对客机纵向飞行轨迹进行优化。以一架类似于B737-800的客机为例,优化目标分别为直接使用成本、总温室气体排放量,及两者组合的多目标,优化状态分别为不考虑风场和雷雨区因素、考虑风场因素、考虑雷雨区因素。结果表明,风向为逆风时,客机在风场中的飞行最佳高度有所降低,进入风速较低的区域,从而减小阻力和油耗。但是由于此时飞机的地速变小,会导致飞行时间有所增加;顺风时情况恰好相反。而且算例表明优化方法对躲避雷雨区具有良好的适应性。
        Considering the influence of wind field and thunderstorm area on the flight trajectory,the vertical flight trajectory is optimized to improve the flight economy of civil aircraft and reduce its environmental impact.The flight trajectory model was established based on the continuous flight profile which is described in the Next Generation Air Transportation System.Synthesizing both of the economy and environmental impact metrics,the vertical flight trajectory of civil aircraft was optimized.Taking a transport similar to B737-800 as an example,the optimization objectives were the direct operation cost,the total global warming potential and a synthesis objective,and the optimization states included ignoring the wind field and the thunderstorm area,considering the wind field or the thunderstorm area.The results indicate that when flying in upwind field,the optimum altitude is lower,because the lower altitude could reduce the wind speed,then it reduces the fuel consumption.Meanwhile,due to the ground speed reduction,the total flight time increases.When flying in downwind field,the result turns out to be just the opposite of effect.And the example shows that the optimization method has good adaptability to avoid the thunderstorm area.
引文
[1] 孙鹏.民用飞机连续下降技术初探[J].民用飞机设计与研究,2012(1):6-9.
    [2] Soler M,Zapata D,Olivares A,et al.Comparative Analysis of Commercial Aircraft Trajectory Performance[C].Lisbon,Portugal:2nd International Conference on Engineering Optimization,2010.
    [3] 陈正举.大飞机轨迹优化与四维导航算法研究[D].哈尔滨:哈尔滨工业大学,2008.
    [4] 周堃,王立新.大型军用运输机的飞行航迹优化[J].北京航空航天大学学报,2010(6):654-658.
    [5] 朱思斌,李瑰贤,韩俊伟.基于改进微粒群算法的飞机纵向飞行轨迹优化[J].江南大学学报(自然科学版),2012,11(2):163-168.
    [6] 王素晓.民用飞机巡航段航迹规划和制导方法研究[D].上海:上海交通大学,2011.
    [7] Henderson R,Martins J,Perez E R.Aircraft Conceptual Design for Optimal Environmental Performance[J].The Aeronautical Journal,2012,116(1175):1-22.
    [8] Graham W R,Hall C A,Morales M V.The Potential of Future Aircraft Technology for Noise and Pollutant Emissions Reduction[J].Transport Policy,2014,34:36-51.
    [9] Chen Y N,Kirschen G P,Sridhar B,et al.Identification of Flights for Cost- Efficient Climate Impact Reduction[C].Atlanta,GA:AIAA/3AF Aircraft Noise and Emissions Reduction Symposium,2014.
    [10] Yamashita H,Grewe V,J?ckel P,et al.Towards Climate Optimized Flight Trajectories in a Climate Model:AirTraf[C].Lisbon,Portugal:Eleventh USA/Europe Air Traffic Management Research and Development Seminar June 23,2015.
    [11] Lührs B,Niklass M,Froemming C,et al.Cost- Benefit Assessment of 2D and 3D Climate And Weather Optimized Trajectories[C].Washington DC:16th AIAA Aviation Technology,Integration,and Operations Conference,2016.
    [12] 魏志强,张文秀,韩博.考虑飞机排放因素的飞机巡航性能参数优化方法[J].航空学报,2016,37(11):3485-3493.
    [13] Park S G,Clarke J P.Vertical Trajectory Optimization to Minimize Environmental Impact in the Presence of Wind[J].Mathematics,2016,32(12):1-11.
    [14] 张帅.客机总体综合分析与优化及其在技术评估中的应用[D].南京:南京航空航天大学,2012.
    [15] 刘云飞.民用民航客机飞行轨迹优化方法研究[D].南京:南京航空航天大学,2014.
    [16] ICAO.ICAO Engine Emissions Data Bank[DB/OL].[2012-1-31].https://easa.europa.eu/document- library/icao- aircraft- engine- emissions- databank.
    [17] 王宇,张帅.面向客机概念设计的污染气体排放量估算方法[J].南京航空航天大学学报,2013,45(5):708-714.
    [18] 中国气象信息中心.中国地面累年值日值数据集[DB/OL].[2016-11-10].http://data.cma.cn/data/detail/dataCode/B.0021.0002_320.html.
    [19] 刘璐.天气影响下的空中交通系统容量评估综述[J].航空计算技术,2017,47(4):99-102,106.
    [20] 刘子昂.动态恶劣天气条件下航路通行量研究[J].航空计算技术,2018,48(1):46-48,57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700