P掺杂对二维SiC光电特性调制的机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modulation Mechanism of P-Dopingon Photoelectric Properties of Two-Dimensional SiC
  • 作者:闫万珺 ; 张春红 ; 覃信茂 ; 张忠政 ; 周士芸
  • 英文作者:Yan Wanjun;Zhang Chunhong;Qin Xinmao;Zhang Zhongzheng;Zhou Shiyun;School of Electronic and Information Engineering,Anshun University;Engineering Center of Avionics Electrical and Information Network,Anshun University;
  • 关键词:材料 ; 二维SiC ; P掺杂 ; 光电特性 ; 第一性原理
  • 英文关键词:materials;;2D SiC;;P doping;;photoelectric properties;;first principle
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:安顺学院电子与信息工程学院;安顺学院航空电子电气与信息网络工程中心;
  • 出版日期:2018-04-11 14:37
  • 出版单位:激光与光电子学进展
  • 年:2018
  • 期:v.55;No.632
  • 基金:贵州省科学技术基金(黔科合J字[2015]2001);; 安顺学院博士基金(Asxybsjj201503);安顺学院创新人才团队(2015PT02)
  • 语种:中文;
  • 页:JGDJ201809044
  • 页数:9
  • CN:09
  • ISSN:31-1690/TN
  • 分类号:355-363
摘要
基于第一性原理,对不同P原子掺杂浓度的二维SiC的几何结构、电子结构和光学性质进行了研究。结果表明:随着P掺杂浓度的增加,P掺杂二维SiC的晶格常数变小,带隙减小;价带主要由C-2p,Si-3p和P-3p态电子杂化构成,导带主要由Si-3p态电子构成。P削弱了C—Si键的共价性,增加了离子性。P掺杂扩大了二维SiC的光吸收范围,吸收系数和折射率随掺杂浓度的增加而增大,表明P掺杂能有效提高二维SiC对可见光和红外光的吸收。
        The geometrical structures,electronic structures and optical properties of the two-dimensional(2D)SiC doped with P with different concentrations are investigated by the first principle method.The results show that,the lattice constant and the bandgap of 2D SiC doped with P gradually decrease with the increase of P doping concentration.The valence band is mainly composed of the hybridization of the electrons of C-2p,Si-3p and P-3p states,while the conduction band is mainly composed of the electrons of Si-3p state.The P doping weakens the covalency and increases the ionic property for the C—Si bond.The P doping expands the optical absorption range of 2D SiC,and makes the absorption coefficient and the refractive index increase with the increase of doping concentration,which indicates that P doping can effectively improve the absorption for both the visible and infrared light.
引文
[1]Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [2]Coleman J N,Lotya M,O′Neill A,et al.Twodimensional nanosheets produced by liquid exfoliation of layered materials[J].Science,2011,331(6017):568-571.
    [3]Zeng Z,Yin Z,Huang X,et al.Single-layer semiconducting nanosheets:High-yield preparation and device fabrication[J].Angewandte Chemie International Edition,2011,50(47):11093-11097.
    [4]Zhang Z H,Guo W L.Energy-gap modulation of BNribbons by transverse electric fields:First-principles calculations[J].Physical Review B,2008,77(7):075403.
    [5]Liu H,Neal A T,Zhu Z,et al.Phosphorene:An unexplored 2D semiconductor with a high hole mobility[J].ACS Nano,2014,8(4):4033-4041.
    [6]Li L K,Yu Y J,Ye G J,et al.Black phosphorus field-effect transistors[J].Nature Nanotechnology,2014,9(5):372-377.
    [7]Chen S J,Liu Y C,Shao C L,et al.Structural and optical properties of uniform ZnO nanosheets[J].Advanced Materials,2005,17(5):586-590.
    [8]ahin H,Cahangirov S,Topsakal M,et al.Monolayer honeycomb structures of group-IVelements and III-V binary compounds:Firstprinciples calculations[J].Physical Review B,2009,80(15):155453.
    [9]Shi Z,Zhang Z,Kutana A,et al.Predicting twodimensional silicon carbide monolayers[J].ACS Nano,2015,9(10):9802-9809.
    [10]Yan W J,Xie Q,Qin X M,et al.First-principle analysis of photoelectric properties of silicon-carbon materials with graphene-like honeycomb structure[J].Computational Materials Science,2017,126:336-343.
    [11]Chabi S,Chang H,Xia Y,et al.From graphene to silicon carbide:Ultrathin silicon carbide flakes[J].Nanotechnology,2016,27(7):075602.
    [12]Cui H W,Zhang F C,Shao T T.First-principles study of electronic structure and optical properties of Sn-doped ZnO[J].Acta Optica Sinica,2016,36(7):0716002.崔红卫,张富春,邵婷婷.Sn掺杂ZnO电子结构与光学性质的第一性原理研究[J].光学学报,2016,36(7):0716002.
    [13]Ma W K,Wu J J,Zhang G F,et al.First-principle study of electronic structure and optical property of Cu/Co doped FeS2[J].Acta Optica Sinica,2016,36(10):1016001.马万坤,武佳佳,张国范,等.Cu/Co掺杂FeS2电子结构及光学性质的第一性原理研究[J].光学学报,2016,36(10):1016001.
    [14]Li X,Fan M H,Yang Y F,et al.First-principles study on optical properties of N-Co co-doped anatase TiO2[J].Laser&Optoelectronics Progress,2017,54(12):121604.李鑫,范梦慧,杨云飞,等.N-Co共掺锐钛矿相TiO2光学性质的第一性原理研究[J].激光与光电子学进展,2017,54(12):121604.
    [15]Zeng F J,Tan Y Q,Yu Y S,et al.Electronic structure and optical property of Ag-Ce co-doped anatase TiO2[J].Laser&Optoelectronics Progress,2017,54(7):071601.曾凡菊,谭永前,余幼胜,等.Ag-Ce共掺杂锐钛矿型TiO2的电子结构与光学性质[J].激光与光电子学进展,2017,54(7):071601.
    [16]Zeng F J,Tan Y Q,Liang D M,et al.Study on first-principle of Ce/S co-doped anatase TiO2[J].Laser&Optoelectronics Progress,2016,53(6):061601.曾凡菊,谭永前,梁冬梅,等.Ce/S共掺杂锐钛矿型TiO2的第一性原理研究[J].激光与光电子学进展,2016,53(6):061601.
    [17]Shi R Q,Wu Y,Liu H,et al.First-principles calculations of P doped 4H-SiC supercell[J].The Chinese Journal of Nonferrous Metals,2015,25(6):1617-1624.史茹倩,吴一,刘红,等.P掺杂4H-SiC超晶胞的第一性原理计算[J].中国有色金属学报,2015,25(6):1617-1624.
    [18]Cen W F,Yang Y Y,Fan M H,et al.Electronic structure and optical properties of orthorhombic P-doped Ca2Si calculated by the first-principles[J].Acta Photonica Sinica,2014,43(8):0816003.岑伟富,杨吟野,范梦慧,等.P掺杂正交相Ca2Si电子结构及光学性质的第一性原理计算[J].光子学报,2014,43(8):0816003.
    [19]Zheng S K,Wu G H,Liu L.First-principles calculations of P-doped anatase TiO2[J].Acta Physica Sinica,2013,62(4):043102.郑树凯,吴国浩,刘磊.P掺杂锐钛矿相TiO2的第一性原理计算[J].物理学报,2013,62(4):043102.
    [20]Chen Z R,Xu Y H,He Z R.The structure,spectrum and electrical properties of phosphorusdoped graphene[J].Journal of Sichuan University(Natural Science Edition),2016,53(3):587-590.陈自然,徐友辉,何展荣.磷掺杂石墨烯的结构、光谱及电学性质[J].四川大学学报(自然科学版),2016,53(3):587-590.
    [21]Segall M D,Lindan P J,Probert M A,et al.Firstprinciples simulation:Ideas,illustrations and the CASTEP code[J].Journal of Physics:Condensed Matter,2002,14(11):2717.
    [22]Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865.
    [23]Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B,1990,41(11):7892.
    [24]Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations[J].Physical Review B,1976,13(12):5188.
    [25]Broyden C G.The convergence of a class of double-rank minimization algorithms:The new algorithm[J].Journal of the Institute for Mathematics and Applications,1970,6:222.
    [26]Fletcher R.A new approach to variable metric algorithms[J].The Computer Journal,1970,13(3):317-322.
    [27]Goldfarb D.A family of variable metric methods derived by variational means[J].Mathematics of Computation,1970,24(109):23-26.
    [28]Shanno D F.Conditioning of quasi-Newton methods for function minimization[J].Mathematics of Computation,1970,24(111):647-656.
    [29]Yu Z Z,Hu M L,Zhang C X,et al.Transport properties of hybrid zigzag graphene and boron nitride nanoribbons[J].The Journal of Physical Chemistry C,2011,115:10836-10841.
    [30]Zhou Y G,Yang P,Wang Z G,et al.Functionalized graphene nanoroads for quantum well device[J].Applied Physics Letters,2011,98(9):093108.
    [31]Huda M N,Yan Y,Al-Jassim M M.On the existence of Si-C double bonded graphene-like layers[J].Chemical Physics Letters,2009,479(4/6):255-258.
    [32]Fang R C.Solid state spectroscopy[M].Hefei:University of Science and Technology of China Press,2003:55.方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2003:55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700