用户名: 密码: 验证码:
大型螺旋波纹管内流动与传热的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The numerical simulation research for the heat transfer and flow of the large-scale helically corrugated pipe
  • 作者:路巧艳 ; 沈人杰 ; 崔阳 ; 马坚
  • 英文作者:Lu Qiaoyan;Shen Renjie;Cui Yang;Ma Jian;School of Chemical Engineering and Technology, Xi'an Jiaotong University;
  • 关键词:螺旋波纹管 ; 数值模拟 ; 综合换热效率
  • 英文关键词:helically corrugated pipe;;numerical simulation;;comprehensive heat transfer efficiency
  • 中文刊名:JSYH
  • 英文刊名:Computers and Applied Chemistry
  • 机构:西安交通大学化学工程与技术学院;
  • 出版日期:2015-11-28
  • 出版单位:计算机与应用化学
  • 年:2015
  • 期:v.32
  • 基金:国家自然科学基金资助项目(21261130583);; 陕西省工业攻关项目(2013K11-24)
  • 语种:中文;
  • 页:JSYH201511010
  • 页数:5
  • CN:11
  • ISSN:11-3763/TP
  • 分类号:56-60
摘要
利用流体仿真软件FLUENT对不同结构参数的某大型螺旋波纹管管内烟气的流动和传热进行了三维稳态数值模拟,比较和分析了螺旋波纹管和光滑管的换热性能,并通过控制变量法研究了螺纹高度、螺纹宽度和螺距等结构参数对螺旋波纹管综合换热性能的影响。研究表明,随着螺纹高度和螺距的增大,螺纹宽度的减小,螺旋波纹管的综合换热性能获得相应的提高。本文还依据模拟的结果,通过回归分析拟合出了努赛尔数、摩擦因数以及综合换热效率的相应关联式,并且通过优化给出了换热管综合换热效率最高时的结构参数,为螺旋波纹管的工业应用提供了理论支持和技术储备。
        The FLUENT as a fluid simulation software is applied for the three-dimensional steady state numerical simulation to obtain the performance of the heat transfer and flow resistance of smoke in the large-scale helically corrugated pipes which have different structure parameters, and at the same time, the heat transfer performance between the helically corrugated pipe and the smooth pipe has been compared and analyzed. Using the method of controlling variable to research the influence of the helical corrugated height,corrugated width, pitch of the helically corrugated pipes on comprehensive transfer performance.The study shows that the comprehensive heat transfer performance gets corresponding rise with the increment of corrugated height and pitch, or the decrement of corrugated width.. Finally, according to result of the simulation, the associated formulas for the Nusselt number, friction factor and comprehensive heat transfer efficiency of helically corrugated pipe are obtained by the means of regression analysis,and the optimal structural parameters are given when the helically corrugated pipe gets the highest comprehensive heat transfer efficiency through optimization method, which give the theoretical support and technical reserve for the industrial application of the helically corrugated pipe.
引文
1 He Qiang,Yang Qiming.The research on heat transfer enhancement and energy conservation[J].Petroleum and Chemical Energy Conservation,2007,(6):11-14.
    2 Zhu Dongsheng,Qian Songwen.Heat transfer enhancement technologies and its application design[J].Chemical Equipment Technology,2000,21(6):1-9.
    3 Li Hongliang.Heat transfer enhancement technologies and its application[J].Chemical Equipment and Anticorrosion,2002,5(02):111-113.
    4 Bergles Arthur.Heat transfer enhancement-the maturing of second-generation heat transfer technology[J].Heat Transfer Engineering,1997,18(1):47-55.
    5 Andrews M J,Fletcher L S.Comparison of several heat transfer enhancement technologies for gas heat exchangers[J].Journal of Heat Transfer,1996,118(4):897-902.
    6 Zhou Xuekun,Liu Faxin,Zhu Xiuwei.A Brief analysis on transfer enhancement technology of heat exchanger[J].Drying Technology and Equipment,2014,12(5):11-15.
    7 Li Anjun,Xingguiju,Zhou Liwen.Progress in study on heat transfer enhancement technology for heat exchanger[J].Energy for Metallurgical Industry,2008,27(1):50-55.
    8 Lijun Wang,Da-Wen Sun,Ping Liang.Heat transfer characteristics of carbon steel spirally fluted tube for high pressure preheaters[J].Energy Conversion and Mangement,2000,41(10):993-1005.
    9 Zhou Qiangtai,Zhao Lingling,Wang Zening.Studies on heat transfer enhancement of spirally corrugated tube and its application to boilers[J].Journal of Southeast University,2005,35(1):1-6.
    10 Darzi A A R,Farhadi M,Sedighi K.Experimental investigation of turbulent heat transfer and flow characteristics of Si O2/water nanofluid within helically corrugated tubes[J].International Communications in Heat and Mass Transfer,2012,39(9):1425-1434.
    11 Pethkool S,Eiamsa-ard S,Kwankaomeng S.Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube[J].International Communications in Heat and Mass Transfer,2011,38(3):340-347.
    12 Zhang Yifan,Li Huixiong,Zhang Yuqian.The influence of internally ribbed tube geometry on pipe flow resistance[J].Journal of Engineering Thermophysics,2011,(7):1161-1164.
    13 Jin Zunlong,Li Zhao,Dong Qiwu.Numerical Simulation on enhancing heat transfer in spirally fluted tubes[J].Journal of Zhengzhou University,2011,32(6):5-8.
    14 Zhang Xiaoyan.Numerical study on the flow and heat transfer characteristic for outward convex helical corrugates tubes[J].Harbin Institute of Technology,2013.
    15 Zhang Jianhua.The analysis of the pipeline friction coefficient of empirical formula[J].Petrochemical Design,2003,20(2):28-30.
    1何强,杨启明.强化传热节能技术的研究[J].石油和化工节能,2007,(6):11-14.
    2 朱冬生,钱颂文.强化传热技术及其设计应用[J].化工装备技术,2000,21(6):1-9.
    3 李洪亮.强化传热技术及其应用[J].化工设备与防腐蚀,2002,5(2):111-113.
    4 周学坤,刘法鑫,朱秀伟.浅析换热器强化传热技术[J].干燥技术与设备,2014,12(5):11-15.
    5 李安军,邢桂菊,周丽雯.换热器强化传热技术的研究进展[J].冶金能源,2008,27(1):50-55.
    6 周强泰赵伶玲,王泽宁.螺旋槽管强化传热研究及其在锅炉中的应用[J].东南大学学报,2005,35(1):1-6.
    7 张一帆,李会雄,张煜乾.内螺纹管管型结构对管内流动阻特性的影响[J].工程热物理学报,2011,(7):1161-1164.
    8 靳遵龙,李赵,董其伍.螺旋槽管管内强化传热的三维数值模拟.郑州大学学报,2011,32(6):5-8.
    9 张晓燕.外凸式螺旋波纹管流动与传热特性的数值模拟研究[D].哈尔滨工业大学,2013.
    10 张建华.管道摩擦系数经验公式的分析[J].石油化工设计,2003,20(2):28-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700