干旱区夏季晴空期超厚对流边界层发展的能量机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The energy mechanism controlling the continuous development of a super-thick atmospheric convective boundary layer during continuous summer sunny periods in an arid area
  • 作者:张强 ; 乔梁 ; 岳平 ; 李岩瑛
  • 英文作者:Qiang Zhang;Liang Qiao;Ping Yue;Yanying Li;Institute of Arid Meteorology,China Meterorological Administration;Gansu Provincial Meteorological Bureau;College of Atmospheric Sciences, Lanzhou University;Gansu Provincial Meteorological Information and Technic Support and Equipment Center;Wuwei Meteorological Bureau in Gansu;
  • 关键词:干旱地区 ; 超厚大气对流边界层 ; 地表感热累积效应 ; 夹卷能量 ; 正反馈循环增长
  • 英文关键词:arid region;;super-thick atmospheric convective boundary layer;;surface sensible heat accumulation effect;;entrainment energy;;positive feedback cyclic growth
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国气象局兰州干旱气象研究所;甘肃省气象局;兰州大学大气科学学院;甘肃省气象信息与技术装备保障中心;甘肃省武威市气象局;
  • 出版日期:2019-05-30
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家自然科学基金重点项目(41630426);; 干旱气象科学研究基金(IAM201709)资助
  • 语种:中文;
  • 页:KXTB201915008
  • 页数:14
  • CN:15
  • ISSN:11-1784/N
  • 分类号:109-122
摘要
在全球干旱区,因其特殊的气候环境背景,夏季晴天常常会出现其他地区少见的超厚对流大气边界层(superthick convective boundary layer, SCBL),这种特殊的边界层结构具有重要的天气气候意义,但目前对这种超厚对流边界层发展机制理解十分有限.这既制约了大气数值模式中针对这种超厚对流边界层的参数化改进,也限制了超厚对流边界层与天气气候背景相互作用的科学认识.通过选取我国西北干旱区敦煌荒漠戈壁为代表性研究区,利用以往在该区域开展的陆-气相互作用观测试验资料及长期业务探空观测资料,从大气边界层发展的能量机制出发,对该地区出现的超厚对流边界层的发展过程进行分析.分析表明:从日际尺度看在持续晴空期即使在白天地表感热通量日积分值不变甚至减弱的情况下,大气对流边界层(convective boundary layer, CBL)的日最大厚度仍然表现为逐日持续增高的特点,且地表感热提供的能量无法平衡对流边界层发展所需要吸收的能量.主要原因是深厚的近中性残余层(residual layer, RL)在对流边界层发展过程中发挥了重要作用,通过夹卷过程从残余层进入对流边界层的夹卷能量是对流边界层逐日持续发展的关键能量补充.在夏季连续晴空期,对流边界层与残余层之间会形成逐日循环增长机制,使干旱区夏季发展出超厚对流大气边界层.
        In the arid regions of the world, due to the specific climatic and environmental background, a super-thick convective boundary layer(SCBL) often develops on sunny days in summer, whereas such phenomena rarely occur in other areas.This special boundary layer structure has an important synoptic and climatic significance, but there have been few studies of its development mechanism in arid areas, which greatly restricts the parametric improvement of the SCBL and our understanding of the interaction between weather and climate processes. This study was conducted in Dunhuang, which is located in the hinterland of northwest China. Based on data obtained from land-air interaction experiments and long-term operational sounding observations in this region, the energy mechanism controlling the development of the CBL and the developmental process of the SCBL were systematically analyzed. In arid northwest China, it is possible that the thickness of the CBL can extend to over 3 km for most of the year, except winter. Even in the early summer, when there is little rain and strong solar radiation, the thickness of the CBL may reach an extreme state of 5.4 km. The thickness of the CBL at this time is higher than that observed in midsummer, when there is slightly more precipitation in this area. This is basically consistent with the extreme thickness of the CBL recently discovered in the Sahara Desert in Africa. In the general mechanism that controls the development of the CBL, there is a close relationship between the development of the CBL and the sensible heat flux of the surface. However, the correlation between the thickness of the CBL and the surface sensible heat flux at the same time is not strong, whereas the correlation between the thickness of the CBL and the cumulative surface sensible heat flux is very strong. This indicates that the development of the CBL is the result of the continuous accumulation of the sensible heat flux on the surface, which is consistent with the energy mechanism controlling the CBL. Although the development of the CBL is closely related to the cumulative heating effect of the daytime surface sensible heat flux, the CBL would still continue to increase even if the integral value of the daytime surface sensible heat flux remained unchanged or even weakened during the continuous clear sky period. The energy provided through sensible heat does not fully explain the energy required to develop the CBL. This is mainly because the deep nearneutral residual layer(RL) background plays an important role in the development of the SCBL. The entrainment energy from the deep RL to the CBL is the key energy supply for the continuous development of the CBL. The sum of the entrainment energy and surface sensible heat energy coincides with the energy absorbed by the development of the SCBL.The reason for the occurrence of an SCBL in arid areas is not only the strong sensible heating in summer but also the persistent clear skies in such areas. In each continuous clear sky period, the positive feedback mechanism between the CBL and the RL will become operational. Under this mechanism, the daily maximum thickness of the CBL and the thickness of the RL will increase continuously. The thickness of the SCBL is generally over 3 km, although depths of over 5 km can develop through a cyclic growth mechanism during periods of strong surface heating. Otherwise, the thickness of the CBL can only reach 2–3 km in summer, and it is unlikely that an SCBL will develop. Strong sensible heating is the key trigger of the positive feedback cycle growth mechanism between the CBL and the RL, which explains why the SCBL phenomenon can only occur in dry areas, with intense surface heating in summer.
引文
1 Zhang Q,Zhao Y D,Wang S,et al.A study on atmospheric thermal boundary layer structure in extremely arid desert and gobi region on the clear day in summer(in Chinese).Adv Earth Sci,2007,22:1150-1159[张强,赵映东,王胜,等.极端干旱荒漠区典型晴天大气热力边界层结构分析.地球科学进展,2007,22:1150-1159]
    2 Zhang Q.Study on depth of atmospheric thermal boundary layer in extreme arid desert regions(in Chinese).J Desert Res,2007,27:614-620[张强.极端干旱荒漠地区大气热力边界层厚度研究.中国沙漠,2007,27:614-620]
    3 Liu H Z,Fen J W,Wang L,et al.Overview of recent studies on atmospheric boundary layer physics at LAPC(in Chinese).Chin J Atmos Sci,2013,37:467-476[刘辉志,冯健武,王雷,等.大气边界层物理研究进展.大气科学,2013,37:467-476]
    4 Huang R H,Zhou D G,Chen W,et al.Recent progress in studies of air-land interaction over the arid area of northwest China and its impact on climate(in Chinese).Chin J Atmos Sci,2013,37:189-210[黄荣辉,周德刚,陈文,等.关于中国西北干旱区陆-气相互作用及其对气候影响研究的最近进展.大气科学,2013,37:189-210]
    5 Zhang Q,Wang S.On physical characteristics of heavy dust storm and its climatic effect(in Chinese).J Desert Res,2005,25:675-681[张强,王胜.论特强沙尘暴(黑风)的物理特征及其气候效应.中国沙漠,2005,25:675-681]
    6 Cai X N,Shou S W,Zhong Q.Impact of different boundary layer parameterization schemes on the numerical simulation for a rainstorm(in Chinese).Trans Atmos Sci,2006,29:364-370[蔡芗宁,寿绍文,钟青.边界层参数化方案对暴雨数值模拟的影响.大气科学学报,2006,29:364-370]
    7 Angevine W M,White A B,Avery S K.Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler.Bound-Layer Meteorol,2007,68:375-385
    8 Garratt J R.The Atmospheric Boundary Layer.Combridge:Cambridge University Press,1992.316
    9 Sheng P X,Mao J T,Li J G,et al.Atmospheric Physics(in Chinese).Beijing:Peking University Press,2003.239-272[盛裴轩,毛洁泰,李建国,等.大气物理学.北京:北京大学出版社,2003.239-272]
    10 Kaimal J C,Finnigan J J.Atmospheric Boundary Layer Flows.Oxford:Oxford University Press,1994.391-420
    11 Raman S,Templeman B,Templeman S,et al.Structure of the Indian southwesterly pre-monsoon and monsoon boundary layers:Observations and numerical simulation.Atmos Environ Part A General Top,1990,24:723-734
    12 Gamo M,Goyal P,Kumari M,et al.Mixed-layer characteristics as related to the monsoon climate of New Delhi,India.Bound-Layer Meteorol,1994,67:213-227
    13 Gamo M.Thickness of the dry convection and large-scale subsidence above deserts.Bound-Layer Meteorol,1996,79:265-278
    14 Li M S,Ma Y M,Ma W Q,et al.Structural difference of atmospheric boundary layer between dry and rainy seasons over the central Tibetan Plateau(in Chinese).J Glaciol Geocryol,2011,33:72-79[李茂善,马耀明,马伟强,等.藏北高原地区干、雨季大气边界层结构的不同特征.冰川冻土,2011,33:72-79]
    15 Chen X,?kerlak B,Rotach M W,et al.Reasons for the extremely high-ranging planetary boundary layer over the Western Tibetan Plateau in winter.J Atmos Sci,2016,73:2021-2038
    16 Chen X,A?el J A,Su Z,et al.The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau.PLo S One,2013,8:e56909
    17 Zhang Q,Wei G A,Hou P.Observation studies of atmosphere boundary layer characteristic over Dunhuang gobi in early summer(in Chinese).Plateau Meteorol,2004,23:587-597[张强,卫国安,侯平.初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究.高原气象,2004,23:587-597]
    18 Takemi T,Satomura T.Numerical experiments on the mechanisms for the development and maintenance of long-lived squall lines in dry environments.J Atmos Sci,2000,57:1718-1740
    19 Yang Y,Liu X Y,Lu Z H,et al.Study on depth of atmospheric boundary layer in gobi desert regions of the Bosten lake basin(in Chinese).Acta Sci Nat Univ Pek,2016,52:829-836[杨洋,刘晓阳,陆征辉,等.博斯腾湖流域戈壁地区大气边界层高度特征研究.北京大学学报(自然科学版),2016,52:829-836]
    20 Ma M,Pu Z,Wang S,et al.Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in North-west China.Bound-Layer Meteorol,2011,140:163-176
    21 Zhao C L,LüS H,Li Z G,et al.Numerical simulation of influence of land surface thermal condition on Badain Jaran Desert atmospheric boundary layer height in summer(in Chinese).Plateau Meteorol,2014,33:1526-1533[赵采玲,吕世华,李照国,等.夏季巴丹吉林沙漠陆面热状况对边界层高度影响的模拟实验.高原气象,2014,33:1526-1533]
    22 Messager C,Parker D J,Reitebuch O,et al.Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset:Observations and analyses from the research flights of 14 and 17 July 2006.Quart J Roy Meteorol Soc,2006,136:107-124
    23 Parker D J,Thorncroft C D,Burton R R,et al.Analysis of the African easterly jet,using aircraft observations from the JET2000 experiment.Quart J Roy Meteorol Soc,2000,131:1461-1482
    24 Marsham J H,Parker D J,Grams C M,et al.Observations of mesoscale and boundary-layer circulations affecting dust uplift and transport in the Saharan boundary layer.Atmos Chem Phys Discuss,2008,8:8817-8846
    25 Cuesta J,Edouart D,Mimouni M,et al.Multiplatform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset,Algeria,in the framework of the African monsoon multidisciplinary analysis field campaign conducted in 2006.J Geophys Res Atmos,2008,113:596-598
    26 Cuesta J,Marsham J H,Parker D J,et al.Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer.Atmos Sci Lett,2010,10:34-42
    27 Zhang Q,Wang S.On physical characteristics of heavy dust storm and its climatic effect(in Chinese).J Desert Res,2005,25:675-681[张强,王胜.论特强沙尘暴(黑风)的物理特征及其气候效应.中国沙漠,2005,25:675-681]
    28 Zhang Q,Wang S,Sun Z X.A study of atmospheric boundary layer structure during a clear day in the arid region of Northwest China.Acta Meteorol Sin,2009,23:327-337
    29 Zhang Q,Wang S,Zhang J,et al.The progress on land surface processes and atmospheric boundary layer in arid regions(in Chinese).Adv Earth Sci,2009,24:1185-1194[张强,王胜,张杰,等.干旱区陆面过程和大气边界层研究进展.地球科学进展,2009,24:1185-1194]
    30 Zhang Q,Zhang J,Qiao J,et al.Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China.Sci China Earth Sci,2012,54:1585-1594
    31 Zhang Q,Wang S,Li Y Y.The study of physical mechanism of influence on atmospheric boundary layer depth in arid regions of Northwest China.Acta Meteorol Sin,2006,20:1-12
    32 Zhao C L,LüS H,Han B,et al.Relationship between the convective boundary layer and residual layer over Badain Jaran Desert in summer(in Chinese).Plateau Meteorol,2016,35:1004-1014[赵采玲,吕世华,韩博,等.夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究.高原气象,2016,35:1004-1014]
    33 Zhao J H,Zhang Q,Wang S.A simulative study of the thermal mechanism for development of the convective boundary layer in the arid zone of northwest China(in Chinese).Acta Meteorol Sin,2011,69:1029-1037[赵建华,张强,王胜.西北干旱区对流边界层发展的热力机制模拟研究.气象学报,2011,69:1029-1037]
    34 Zhang L G,Wang R Z,Huang X M,et al.Introduction of L band wind finding radar electronic radiosonde system(in Chinese).J Arid Meteorol,2002,4:30-32[张立功,王汝忠,黄小明,等.L波段测风雷达-电子探空仪系统简介.甘肃气象,2002,4:30-32]
    35 Yu W P,Zhang C C.L band(1)High Altitude Meteorological Detection System Business Operation Manual(in Chinese).Beijing:Meteorological Press,2005.12-18[俞卫平,章澄昌.L波段(1型)高空气象探测系统业务操作手册.北京:气象出版社,2005.12-18]
    36 Li Y Y,Zhang Q,Xue X L,et al.Relationship between atmosphere boundary layer characteristics and sand-dust weather climatology in Minqin(in Chinese).J Desert Res,2011,31:757-764[李岩瑛,张强,薛新玲,等.民勤大气边界层特征与沙尘天气的气候学关系研究.中国沙漠,2011,31:757-764]
    37 Holzworth G C.Estimates of mean maximum mixing depths in the contiguous United States.Month Weather Rev,1964,12:235-242
    38 Hyun Y K,Kim K E,Ha K J.A comparison of methods to estimate the height of stable boundary layer over a temperate grassland.Agric For Meteor,2005,132:132-142
    39 Seibert P,Beyrich F,Gryning S E,et al.Review and intercomparison of operational methods for the determination of the mixing height.Atmos Environ,2000,34:1001-1027
    40 Holzworth G C.Mixing depths,wind speeds and air pollution potential for selected locations in the United States.J Appl Meteor,1967,6:1039-104441 Stull.Introduction to Boundary Layer Meteorology(in Chinese).Qingdao:Qingdao Ocean University Press,1991.493-494[斯塔尔.边界层气象学导论.青岛:青岛海洋大学出版社,1991.493-494]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700