Ti-Nb合金热变形行为及应变耦合本构模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hot deformation behavior and strain compensation constitutive model of Ti-Nb alloy
  • 作者:刘建军 ; 王克鲁 ; 鲁世强 ; 李鑫 ; 程静
  • 英文作者:LIU Jian-jun;WANG Ke-lu;LU Shi-qiang;LI Xin;CHENG Jing;School of Aerospace Manufacturing Engineering, Nanchang Hang Kong University;
  • 关键词:Ti-Nb合金 ; 热变形行为 ; 本构模型 ; 应变耦合
  • 英文关键词:Ti-Nb alloy;;hot deformation behavior;;constitutive model;;strain compensation
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:南昌航空大学航空制造工程学院;
  • 出版日期:2019-05-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.227
  • 基金:国家自然科学基金(51464035)
  • 语种:中文;
  • 页:JSCL201905030
  • 页数:7
  • CN:05
  • ISSN:11-4545/TG
  • 分类号:161-166+172
摘要
采用热模拟设备对Ti-Nb合金进行压缩实验,研究了其在应变速率为0.001~10 s~(-1)和变形温度为790~940℃时的热变形行为,并建立了基于应变耦合的Z参数修正的Arrhenius本构模型,同时获得了应变速率、变形温度与稳态应力之间的规律。结果表明:合金的流变应力会随着变形温度的下降和应变速率的上升而增加;所建立的本构模型具有非常高的精确度。通过计算,所建的本构模型在790℃≤T≤850℃时R值为0.9833,误差在10%以内的数据点占总数的95%,平均误差4.98%,最大误差13.7%;在850℃        The hot deformation behavior of Ti-Nb alloy at strain rate of 0.001-10 s~(-1) and deformation temperature of 790-940 ℃ was studied by using a thermal-mechanical simulator, and an Arrhenius model based on strain compensation Z-parameter correction was established. The rule among strain rate, deformation temperature and steady-state stress was obtained. The results show that the flow stress of the alloy increases with the decrease of the deformation temperature and the increase of the strain rate, and the established constitutive model has a very high accuracy. The calculated results show that when the deformation temperature is 790-850 ℃, the R value of the established constitutive model is 0.9833, the data points with the error within 10% account for 95% of the total, the average error is 4.98%, the maximum error is 13.7%, and when the deformation temperature is 850-940 ℃, the R value is 0.9853, the data points with the error within 10% account for 94.44% of the total, the average error is 5.33% and the maximum error is 12.82%.
引文
[1] 王运锋,何蕾,郭薇.医用钛合金的研究及应用现状[J].钛工业进展,2015,32(1):1-6.WANG Yun-feng,HE Lei,GUO Wei.Research and application of medical titanium alloy[J].Titanium Industry Progress,2015,32(1):1-6.
    [2] Wang K.The use of titanium for medical applications in the USA[J].Materials Science and Engineering A,1996,213(1):134-137.
    [3] 李红梅,雷霆,方树铭,等.生物医用钛合金的研究进展[J].金属功能材料,2011,18(2):70-73.LI Hong-mei,LEI Ting,FANG Shu-min,et al.Research progress of biomedical titanium alloys[J].Metallic Functional Materials,2011,18(2):70-73.
    [4] Sun B,Meng X L,Gao Z Y,et al.Effect of annealing temperature on shape memory effect of cold-rolled Ti-16at.%Nb alloy[J].Journal of Alloys and Compounds,2017,715:16-20.
    [5] 姚强,邢辉,郭文渊,等.Ti-Nb合金β结构稳定性和弹性性质[J].中国有色金属学报,2008:18(1):126-131.YAO Qiang,XING Hui,GUO Wen-yuan,et al.β phase stability and elastic property of Ti-Nb alloys[J].The Chinese Journal of Nonferrous Metals,2008,18(1):126-131.
    [6] 王本力,李莉,郑玉峰.生物医用Ti-Nb基合金的显微组织与耐磨性[J].中国有色金属学报,2010(S1):953-957.WANG Ben-li,LI Li,ZHENG Yu-Feng.Microstructure and wear behavior of biomedical Ti-Nb based alloys[J].The Chinese Journal of Nonferrous Metals,2010(S1):953-957.
    [7] 罗皎,李淼泉,李宏,等.TC4钛合金高温变形行为及其流动应力模型[J].中国有色金属学报,2008,18(8):1395-1401.LUO Jiao,LI Miao-quan,LI Hong,et al.High temperature deformation behavior of TC4 titanium alloy and its flows stress model[J].The Chinese Journal of Nonferrous Metals,2008,18(8):1395-1401.
    [8] 王克鲁,鲁世强,康永林,等.Ti3Al 基合金的热变形行为及加工图[J].稀有金属材料与工程,2011,40(9):1534-1539.WANG Ke-lu,LU Shi-qiang,KANG Yong-lin,et al.Deformation behavior and processing map of Ti3Al based alloy during the isothermal compression[J].Rare Metal Materials and Engineering,2011,40(9):1534-1539.
    [9] Ma X,Zeng W,Sun Y,et al.Modeling constitutive relationship of Ti17 titanium alloy with lamellar starting microstructure[J].Materials Science and Engineering:A,2012,538:182-189.
    [10] 王清,李中华,孙东立,等.TC4钛合金的热变形行为及其影响因素[J].材料热处理学报,2005,26(4):56-59.WANG Qing,LI Zhong-hua,SUN Dong-li,et al.Behavior of hot deformation and its effect factors for TC4 titanium alloy[J].Transactions of Materials and Heat Treatment,2005,26(4):56-59.
    [11] Long M,Rack H J.Thermo-mechanical stability of forged Ti-26Al-10Nb-3V-1Mo(at%)[J].Materials Science and Engineering:A,1995,194(1):99-111.
    [12] 朱知寿,王新南,顾伟,等.TC21钛合金高温热变形行为研究[J].中国材料进展,2009,28(2):51-55.ZHU Zhi-shou,WANG Xin-nan,GU Wei,et al.Study on high temperature deformation behaviors of new type TC21 titanium alloy[J].Materials China,2009,28(2):51-55.
    [13] 信彦辉,李全安.Mg-7Gd-2.5Nd-0.5Zr 耐热镁合金热变形行为[J].材料热处理学报,2018,39(1):1-7.XIN Yan-hui,LI Quan-an.Hot deformation behavior of Mg-7Gd-2.5Nd-0.5Zr heat-resistant magnesium alloy[J].Transactions of Materials and Heat Treatment,2018,39(1):1-7.
    [14] 段永华,孙勇,何建洪,等.Pb-Mg-Al合金的热变形行为与加工图[J].中国有色金属学报,2013,23(2):311-319.DUAN Yong-hua,SUN Yong,HE Jian-hong,et al.Hot deformation behavior and processing map of Pb-Mg-Al alloy[J].The Chinese Journal of Nonferrous Metals,2013,23(2):311-319.
    [15] Kreuss G.Deformation Processing and Structure[M].Ohio:American Society for Metal,1984.
    [16] Zener C,Hollomon J H.Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics,1944,15(1):22-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700