陕北沙化区3种主要植物根际土壤细菌多样性与土壤理化性质相关性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of bacteria diversity in the rhizosphere soil of three main plants and its correlation with the soil physical and chemical properties in the desertification area of northern Shaanxi
  • 作者:罗旦 ; 陈吉祥 ; 程琳 ; 李彦林 ; 王永刚 ; 周永涛
  • 英文作者:LUO Dan;CHEN Jixiang;CHENG Lin;LI Yanlin;WANG Yonggang;ZHOU Yongtao;School of Petrochemical Engineering,Lanzhou University of Technology;Petro China Beijing Natural Gas Pipeline Co.,Ltd;
  • 关键词:固沙植物 ; 根际土壤 ; 高通量测序 ; 细菌群落 ; 土壤理化性质
  • 英文关键词:sand-fixing plants;;rhizosphere soil;;high-throughput sequencing;;bacteria community diversity;;physical and chemical properties of soil
  • 中文刊名:GHZH
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:兰州理工大学石油化工学院;中石油北京天然气管道有限公司;
  • 出版日期:2018-12-26
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:v.33;No.247
  • 基金:国家自然科学基金(31272694);; 中国石油天然气股份有限公司天然气与管道分公司科研项目(2014D-4610-0501)资助
  • 语种:中文;
  • 页:GHZH201903025
  • 页数:7
  • CN:03
  • ISSN:15-1112/N
  • 分类号:153-159
摘要
柠条、沙柳和沙蒿是我国陕北生态脆弱区主要固沙植物,为研究其环境适应机制,用高通量测序技术研究了榆林沙化区3种主要固沙植物根际土壤细菌多样性及其与土壤理化性质相关性。发现非根际土壤细菌由22门组成,含量超过1%优势菌门主要为放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、绿弯菌门(Chloroflexi)、芽单胞菌门(Gemmatimonadetes)和浮霉菌门(Planctomycetes),占细菌总数96. 07%。柠条、沙柳和沙蒿根际土壤细菌群落分别由25、23和24门组成,含量超过1%优势菌门分别占细菌类群的94. 40%、95. 42%、95. 80%。其中,Thermotogae、Atribacteria、Lentisphaerae为柠条根际土壤所特有菌门;Caldiserica为沙蒿根际土壤特有菌门;BRC1类群为三种植物根际土壤共有菌门,在非根际土壤中未发现。非根际土壤、柠条、沙柳、沙蒿根际土壤细菌属分别为455、499、461和465。各优势菌门和属所占比例在不同植物根际土壤及其非根际土壤中存在明显差别。土壤细菌群落和主要理化性质存在显著相关性,其中全氮、速效氮、全磷和速效钾是影响土壤细菌丰富度主要因素。
        Caragana korshinskii,Salix psammophila and Artemisia selengensis are the main sand-fixing plants in ecologically fragile areas of northern Shaanxi. In order to understand their environmental adaptation mechanism,the bacteria diversities in the rhizosphere soils of the three sand fixing plants in Yulin city and their correlation with soil physical and chemical properties were studied by high-throughput sequencing technology. The non-rhizospheric soil bacteria were found to consist of 22 phyla,and the dominant phyla that are more than 1% of the bacteria accounted for 96. 07% of the total number of bacteria,mainly Actinobacteria,Proteobacteria,Acidobacteria,Firmicutes,Bacteroidetes,Chloroflexi,Gemmatimonadetes and Planctomycetes. The results show that the bacteria communities in the rhizosphere soils of C. korshinskii,S. psammophila and A. selengensis are composed of 25,23 and 24 phyla,respectively,and the proportion of dominant bacteria that their contents are more than 1% of total bacteria account for 94. 40%,95. 42% and 95. 80%,respectively. Thermotogae,Atribacteria and Lentisphaerae are the unique phyla in the rhizosphere soils of C. korshinskii. Caldiserica exists only in the rhizosphere soils of A. selengensis. BRC1 belong to the rhizosphere soil of three plants,but are not found in the non rhizosphere soils. The proportion of the dominant phyla and genus are significantly different. There is a significant correlation between the soil bacteria community structure and the main physical and chemical properties. The total nitrogen,available nitrogen,total phosphorus and available potassium are the main factors affecting the soil bacteria richness.
引文
[1]Fonseca M B,Dias T,Carolino M M. Belowground microbes mitigate plant-plant competition[J]. Plant Science,2017,262:175~181.
    [2]肖烨,黄志刚,武海涛,等.三江平原典型湿地类型土壤微生物特征与土壤养分的研究[J].环境科学,2015,36(5):1842~1848.
    [3]Yang Y,Liu B R. Distribution of soil nutrient and microbial biomass in rhizosphere versus non-rhizosphere area of different plant species in desertified steppe[J]. Acta Ecologica Sinica,2015,35(22):7562~7570.
    [4]赵燕娜,廖超英,李晓明.毛乌素沙地4种固沙植物根际与非根际土壤生物学特性[J].干旱区研究,2015,32(4):680~686.
    [5]张威,章高森,刘光琇,等.腾格里沙漠东南缘可培养微生物群落数量与结构特征[J].生态学报,2012,32(2):567~577.
    [6]周米京,高城雄,郝文功,等.灌木固沙林改良土壤效益分析[J].水土保持通报,2009,29(1):138~141.
    [7]南京农业大学,主编.土壤农化分析(第二版)[M].北京:农业出版社,1990:29~85.
    [8]F Rosemary,U Mishra. Exploring the spatial variability of soil properties in an Alfisol soil catena[J]. CATENA,2017,150(3):53~61.
    [9]关松荫.土壤酶及其研究法[M].北京:农业出版社,1983:182~266.
    [10]Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996~998.
    [11]J Ni,X Li,Z He. A novel method to determine the minimum number of sequences required for reliable microbial community analysis[J]. J Microbiol Methods,2017,137(8):196~201.
    [12]Calba H,Jaillard B,Fallavier P. Agarose as a suitable substrate for use in the study of Al dynamics in the rhizosphere[J]. Plant and Soil,1996,178(1):67~74.
    [13]Ring Eva,H9gbom Lars,Jansson Gunnar. Effects of previous nitrogen fertilization on soil-solution chemistry after final felling and soil scarification at two nitrogen-limited forest sites[J]. Canadian Journal of Forest Research,2013,43:396~404.
    [14]Frank D A,Groffman P M. Plant rhizospheric N processes:what we don't know and why we should care[J]. Ecology,2009,90(6):1512~1519.
    [15]王晓锋,袁兴中,刘红,等.三峡库区消落带4种典型植物根际土壤养分与氮素赋存形态[J].环境科学,2015,36(10):3662~3673.
    [16]刘任涛,柴永青,徐坤,等.荒漠草原区柠条固沙人工林地表草本植被季节变化特征[J].生态学报,2014,34(2):500~508.
    [17]Cheng W X. Synthesis and modeling perspectives of rhizosphere priming[J]. New Phytologist,2014,201(1):31~44.
    [18]张超,刘国彬,薛萐,等.黄土丘陵区不同植被根际土壤微量元素含量特征[J].应用生态学报,2012,23(3):645~650.
    [19]Zhang Y,Xu J,Riera N. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome[J]. Microbiome,2017,5(1):97~113.
    [20]Pérez-Jaramillo Juan E. Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Molecular Biology,2016,90(6):635~644.
    [21]Mao Y J. Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass(Panicum virgatum L.)through root exudates[J]. Environ Microbiol Rep,2014,6(3):293~306.
    [22]王震宇,温胜芳,邢宝山,等. 4种水生植物根际磷素耗竭效应的比较[J].环境科学,2008,29(9):2475~2480.
    [23]Koopmans G F,Chardon W J,Ehlert P A. Phosphorus availability for plant uptake in a phosphorus-enriched non-calcareous sandy soil[J].Journal of Environmental Quality,2004,33:965~975.
    [24]Fraser L H,Carty S M,Steer D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate insubsurface wetland microcosms[J]. Bioresour Technol,2004,94(2):185~192.
    [25]Liu R,Dai Y,Sun L. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species[J]. PLo S One,2015,10(3):1~14.
    [26]孟令军,耿增超,殷金岩,等.秦岭太白山区6种中草药根际与非根际土壤化学性质及酶活性[J].应用生态学报,2012,23(10):2685~2692.
    [27]Packer A,Clay K. Soil pathogens and spatial patterns of seedling mortality in temperate tree[J]. Nature,2000,404:278~281.
    [28]刘洋,黄懿梅,曾全超.黄土高原不同植被类型下土壤细菌群落特征研究[J].环境科学,2016,37(10):3931~3938.
    [29]李新.内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性[J].中国环境科学,2016,36(1):249~260.
    [30]高雪峰.短花针茅荒漠草原土壤微生物群落组成及结构[J].生态学报,2017,37(15):5129~5136.
    [31]Liu J J,Sui Y Y,Yu Z H. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of Northeast China[J]. Soil Biology and Biochemistry,2014,70:113~122.
    [32]Zhang Y G,Cong J,Lu H. Community structure and elevational diversity patterns of soil Acidobacteria[J]. Journal of Environmental Science,2014,26(8):1717~1727.
    [33]Barns S M,Takala S L,Kuske C R. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment[J]. Applied and Environmental Microbiology,1999,65:1731~1737.
    [34]Navarrete A A,Kuramae E E,de Hollander M. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils[J]. FEMS Microbiol Ecology,2013,83:607~621.
    [35]Niu J,Rang Z,Zhang C. The succession pattern of soil microbial communities and its relationship with tobacco bacterial wilt[J]. BMC Microbiol,2016,16(8):233~242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700