风机叶片运用超疏水涂层防覆冰的性能衰减
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anti-icing Performance Degradation for Wind Blades with Superhydrophobic Coatings
  • 作者:蒋兴良 ; 周洪宇 ; 何凯 ; 杨忠毅 ; 胡玉耀
  • 英文作者:JIANG Xingliang;ZHOU Hongyu;HE Kai;YANG Zhongyi;HU Yuyao;State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering,Chongqing University;
  • 关键词:防覆冰性能衰减 ; 风机叶片 ; 超疏水涂层 ; 冰层粘结强度 ; 接触角 ; 接触角滞后
  • 英文关键词:anti-icing performance degradation;;wind turbine blades;;super-hydrophobic coating;;ice adhesion strength;;contact angle;;contact angle hysteresis
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:重庆大学电气工程学院输配电装备及系统安全与新技术国家重点试验室;
  • 出版日期:2019-01-29 13:59
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.314
  • 基金:973计划前期研究专项(2014CB260401);; 国家自然科学基金创新研究群体项目(51321063)~~
  • 语种:中文;
  • 页:GDYJ201901022
  • 页数:6
  • CN:01
  • ISSN:42-1239/TM
  • 分类号:173-178
摘要
覆冰已经严重威胁到风电的发展,国内外学者针对超疏水涂层对风机叶片覆冰的影响进行了大量的研究,但对风机叶片运用超疏水涂层防覆冰的性能衰减研究较为缺乏。在人工气候室内对涂覆3种不同超疏水涂层的风机叶片试品进行防覆冰性能衰减试验。试验中对风机叶片超疏水涂层的冰层粘结强度、接触角、接触角滞后进行测量;并从水滴湿润模型出发,分析了覆冰/脱冰次数对冰层粘结强度、接触角、接触角滞后的影响。研究结果表明:随着覆冰/脱冰循环的进行,风机叶片涂层表面的冰层粘结强度、接触角滞后逐渐增大,接触角逐渐减小,最终其冰层粘结强度与疏水性涂层相当;冰层粘结强度、接触角、接触角滞后的变化率呈现出先增大,后减小的趋势;不同类型的超疏水涂料防覆冰性能衰减存在差异。
        Icing seriously threatens the development of wind power. The effect of superhydrophobic coating on the wind turbine blades' icing is widely researched both at home and abroad. However, little research focuses on the anti-icing performance degradation of super-hydrophobic coatings on wind turbine blades. Based on the investigation at the artificial climate chamber, we studied the anti-icing performance degradation of three kinds of super-hydrophobic coatings on the physical models of wind turbine blade. Through the icing-deicing cycling tests, we measured the ice adhesion strength, contact angle, and contact angle hysteresis of wind turbine blades with coatings. Moreover, based on the water-droplets wetting model, we analyzed the influences of the icing-deicing cycle on the ice adhesion strength, contact angle and contact angle hysteresis. The results show that the adhesion-strength and contact-angle hysteresis increase but the contact angle decreases gradually with the increase of icing-deicing cycles, and the ice adhesion-strength will finally be nearly equal to that of the hydrophobic coating. It also shows that the change rates of the ice adhesion strength, contact angle and contact angle hysteresis increase firstly and then decrease. And there are some obvious differences in the degradation performances of anti-icing for various super-hydrophobic coatings.
引文
[1]中国化工学会涂料涂装专业委员会,海洋石油工业防腐分会.风电保护涂料市场发展现状[J].涂料技术与文摘,2010,31(3):3-9.Chinese Journal of Chemical Industry Institute of Paint and Coatings,Specialized Committee Offshore Oil Industry Corrosion Protection.Development status of wind power protective coatings market[J].Coating Technology and Abstracts,2010,31(3):3-9.
    [2]PARENT O,ILINCA A.Anti-icing and de-icing techniques for wind turbines:critical review[J].Cold Regions Science&Technology,2011,65(1):88-96.
    [3]李辉,赵蕴慧,袁晓燕.抗结冰涂层:从表面化学到功能化表面[J].化学进展,2012,24(11):2087-2096.LI Hui,ZHAO Yunhui,YUAN Xiaoyan.Anti icing coatings:chemistry from surface to surface[J].Chemistry Progress,2012,24(11):2087-2096.
    [4]LAFORTE C.How a solid coating can reduce the adhesion of ice on a structure[J].Proceedings of the International Workshop on Atmospheric Icing of Structures,2002,9(1):1-6
    [5]WANG F,LI C,LV Y,et al.Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions[J].Cold Regions Science&Technology,2010,62(1):29-33.
    [6]PENG C,XING S,YUAN Z,et al.Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade[J].Applied Surface Science,2012,259(41):764-768.
    [7]KARMOUCH R,ROSS G G.Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy[J].Applied Surface Science,2010,257(3):665-669.
    [8]DING X,ZHOU S,GU G,et al.A facile and large-area fabrication method of superhydrophobic self-cleaning fluorinated polysiloxane/TiO2 nanocomposite coatings with long-term durability[J].Journal of Materials Chemistry,2011,21(17):6161-6164.
    [9]蒋立波,石阳春,汪根胜,等.憎水性涂料对风机叶片结冰影响研究[J].涂料工业,2015,45(8):61-66.JIANG Libo,SHI Yangchun,WANG Gensheng,et al.Effects of hydrophobic coating on anti-icing erformance of wind turbine blades[J].Paint&Coatings Industry,2015,45(8):61-66.
    [10]TARQUINI S,ANTONINI C,AMIRFAZLI A,et al.Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades[J].Cold Regions Science&Technology,2014,100(3):50-58.
    [11]KARMOUCH R,COUDéS,ABEL G,et al.Icephobic PTFE coatings for wind turbines operating in cold climate conditions[C]∥Electrical Power&Energy Conference.Montreal,Quebec,Canada:IEEE,2009:1-6.
    [12]PENG C,XING S,YUAN Z,et al.Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade[J].Applied Surface Science,2012,259(41):764-768.
    [13]KRAJ A G,BIBEAU E L.Measurement method and results of ice adhesion force on the curved surface of a wind turbine blade[J].Renewable Energy,2010,35(4):741-746.
    [14]KIMURA S,YAMAGISHI Y,SAKABE A,et al.A new surface coating for prevention of icing on airfoils[C]∥SAE Aircraft and Engine Icing International Conference.Seville,Spain:SAE Technical Paper,2007:3301-3315.
    [15]ANTONINI C,INNOCENTI M,HORN T,et al.Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J].Cold Regions Science&Technology,2011,67(1/2):58-67.
    [16]IEEE Dielectrics and Electrical Insulation Society.IEEE guide for test methods and procedures to evaluate the electrical performance of insulators in freezing conditions:IEEE Standard 1783-2009[S],2009.
    [17]蒋兴良,杨大友.RTV涂料表面冰层与涂料间粘结力及其影响因素分析[J].高电压技术,2010,36(6):1359-1364.JIANG Xingliang,YANG Dayou.Analysis of bonding force between ice coating and coating on the surface of RTV coating[J].High Voltage Engineering,2010,36(6):1359-1364.
    [18]KULINICH S A,FARZANEH M.How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces[J].Langmuir,2009,25(16):8854-8859.
    [19]KULINICH S A,FARZANEH M.Ice adhesion on super-hydrophobic surfaces[J].Applied Surface Science,2009,255(18):8153-8157.
    [20]WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry Research,1936,28(8):988-994.
    [21]QUéRéD.Non-sticking drops[J].Reports on Progress in Physics,2005,68(11):2495.
    [22]CRICK C R,PARKIN I P.Preparation and characterisation of super-hydrophobic surfaces[J].Chemistry,2010,16(12):3568.
    [23]FURUTA T,SAKAI M,ISOBE T,et al.Effect of dew condensation on the wettability of rough hydrophobic surfaces coated with two different silanes[J].Langmuir,2010,26(16):13305-13309.
    [24]DOTAN A,DODIUK H,LAFORTE C,et al.The relationship between water wetting and ice adhesion[J].Journal of Adhesion Science and Technology,2009,23(15):1907-1915.
    [25]ENSIKAT H J,SCHULTE A J,KOCH K,et al.Droplets on superhydrophobic surfaces:visualization of the contact area by cryo-scanning electron microscopy[J].Langmuir:the Acs Journal of Surfaces&Colloids,2009,25(22):13077-13083.
    [26]CASSIE A B D.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40(1):546-551.
    [27]FARHADI S,FARZANEH M,KULINICH S A.Anti-icing performance of superhydrophobic surfaces[J].Applied Surface Science,2011,257(14):6264-6269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700