骊山山前断裂对西安地铁临潼线隧道的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STUDY ON EFFECT OF PIEDMONT FAULT OF LISHAN MOUNTAIN ON XI'AN METRO LINTONG LINE
  • 作者:郭瑞 ; 黄强兵 ; 郑波 ; 刘志强
  • 英文作者:GUO Rui;HUANG Qiangbing;ZHENG Bo;LIU Zhiqiang;China Railway Southwest Research Institute Co.,Ltd.;Department of Geological Engineering,Chang'an University;Key Laboratory of Western China's Mineral Resources and Geological Engineering,Ministry of Education,Chang'an University;
  • 关键词:活动断裂 ; 地铁隧道 ; 变形 ; 内力 ; 设防范围 ; 防治措施
  • 英文关键词:Active fault;;Metro tunnel;;Deformation;;Internal force;;Fortification scope;;Control measures
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:中铁西南科学研究院有限公司;长安大学地质工程系;长安大学西部矿产资源与地质工程教育部重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:v.27;No.131
  • 基金:国家自然科学基金项目(41372328);; 陕西省科技统筹创新项目子课题五(2011KTZB03-02-04)资助~~
  • 语种:中文;
  • 页:GCDZ201903028
  • 页数:9
  • CN:03
  • ISSN:11-3249/P
  • 分类号:209-217
摘要
以西安地铁临潼线穿越骊山山前断裂为研究背景,采用数值模拟方法,通过建立地铁隧道-断裂-地层三维有限元模型,研究了骊山山前断裂错动作用下隧道结构的变形受力特征,以此揭示了骊山山前断裂错动作用对西安地铁临潼线的影响机制以及重点设防位置,确定了地铁临潼线的设防范围,提出了相应防治建议措施。研究结果表明:断裂错动作用造成地铁隧道沿纵向发生弯曲变形,大致可分为3个变形区域:下盘稳定区、剪切拉张区和整体沉降区。断裂附近地层竖向应力和隧道拱底接触压力均表现为上盘减小而下盘增大,而隧道拱顶接触压力在上盘增大下盘减小。同时,沿纵向隧道顶部结构在上盘受压而下盘受拉,底部结构受力刚好相反,在上盘受拉下盘受压;隧道受剪区范围随断裂位错量变化基本保持不变,且最大值均出现在与断裂相交位置处。最后,综合确定了西安地铁临潼线跨越骊山山前断裂的纵向设防长度至少为80 m,并给出了跨断裂西安地铁临潼线的防治措施。研究结果可为西安地铁临潼线跨越骊山山前断裂带设计及其病害防治提供科学参考。
        Based on the metro Lintong line passing through the active fault of Lishan Mountain on Xi'an metro Lintong line,the three-dimensional finite element model of metro tunnel-active fault-stratum was built. Deformation and stress characteristics of metro tunnel crossing the piedmont fault of Lishan Mountain,effect mechanism and key fortification positions of metro tunnel are revealed. The fortification range of the subway Lintong line crossing piedmont fault of Lishan Mountain is determined,and the corresponding measures for prevention and control are put forward. Research result shows that active fault ruptures caused bending deformation along the longitudinal metro tunnel. The tunnel can be divided into three deformation areas: stability section in the footwall,shear tension section in the fault zone and settlement section in the hanging wall. The vertical stratum stress near the fault zone decreases in the hanging wall and increases in the footwall. In addition,the contact pressure at the bottom of the tunnel decreases in the hanging wall and increases in the footwall. Vault contact pressure increases in the hanging wall and decreases in the footwall. And the top of tunnel is in compression at the hanging wall and in tension at the footwall. The bottom of tunnel was in tension at the hanging wall and in compression at the footwall. The shear scope of the tunnel remains unchanged with the variation of fault dislocation. The maximum shear force occurs at the intersection with the fault. Finally,it is confirmed that the fortification length of Lintong line across the fault is at least 80 m. The measures for prevention and control measures are put forward. The conclusions can be presented as the reference for the design and disease control of Xi'an LinTong Line passing through the piedmont active fault of Lishan Mountain.
引文
Bian J M,Tian Q H,Xu J Q,et al.2014.Report on seismic safety evaluation of engineering site in Xi'an metro 9 line(Lintong)[R].Xi'an:Engineering Survey Center of Shanxi Earth Quake.
    Hang Q B.2009.Study on effect of the active ground fissure on metro tunnel and Its hazards control[D].Xi'an:Chang'an University.
    He C,Li L,Zhang J,et al.2014.Seismic damage mechanism of tunnels through fault zones[J].Chinese Journal of Geotechnical Engineering,36(3):427-434.
    Huang Q B,Peng J B,Fan H W,et al.2009.Metro tunnel hazards induced by active ground fissures in Xi'an and relevant control measures[J].Chinese Journal of Geotechnical Engineering,31(5):781-788.
    Huang J Q,Zhao M,Du X L.2017.Non-linear seismic responses of tunnels within normal fault ground under obliquely incident Pwaves[J].Tunnelling and Underground Space Technology,61:26-39.
    Kiani M,Akhlaghi T,Ghalandarzadeh A.2016.Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J].Tunnelling and Underground Space Technology,51:108-119.
    Kun M,Onargan T.2013.Influence of the fault zone in shallow tunneling:A case study of Izmir Metro Tunnel[J].Tunnelling and Underground Space Technology,33:34-45.
    Li T B,Xu Z,Wang R X.2016.Back analysis on mutation characteristics of regional geostress based on seismogenic fault displacement of Wenchuan earthquake[J].Journal of Engineering Geology,24(5):760-767.
    Meng Z J,Peng J B,Huang Q B,et al.2017.Study on deformation response of metro tunnel based on fracture dislocation[J].Journal of Engineering Geology,25(6):1624-1632.
    Peng J B,Zhang Q,Huang Q B,et al.2012.Hazard of ground fissure in Xi'an[M].Beijing:Science Press:502-510.
    The Professional Standards Compilation Group of People's Republic of China.2012.Code for building foundation design specification(GB50007-2011)[S].Beijing:China Architecture and Building Press.
    The Professional Standards Compilation Group of People's Republic of China.2015.Concrete structure design code(GB50010-2010)[S].Beijing:China Architecture and Building Press.
    Shao R M.2011.Study on the Mechanism of tunnel damage and geotechnical failure propagation due to fault rupture[D].Beijing:Beijing Jiaotong University.
    Wang S S,Gao B,Sui C Y,et al.2015.Mechanism of shock absorption layer and shaking table tests on shaking absorption technology of tunnel across fault[J].Chinese Journal of Geotechnical Engineering,37(6):1086-1092.
    Xin C,Gao B,Zhou J M,et al.2014.Shaking table tests of conventional anti-seismic and damping measures on fault-crossing tunnels[J].Chinese Journal of Rock Mechanics and Engineering,33(10):2047-2055.
    Yang Z H,Lan H X,Zhang Y S,et al.2013.Rock dynamic response of railway tunnel traversing through fault under strong earthquake[J].Journal of Engineering Geology,21(2):171-181.
    Zhang T,Xia S G,Tan X Z,et al.2005.Study on influence of fracture structures on tunnel line and construction of mountainous expressways[J].Rock and Soil Mechanics,26(S2):275-278.
    Zhang W X,Sun F,Zhang Z Q.2017.Study on mechanical characteristics and fortified length of tunnel structure under normal slip fault[J].Subgrade Engineering,(4):57-63.
    Zhao Y,Guo E D,Liu Z,et al.2014.Damage analysis of urban metro tunnel under strike-slip fault[J].Rock and Soil Mechanics,35(S2):467-473.
    卞菊梅,田勤虎,许俊奇,等.2014.西安市域快速轨道交通临潼线工程场地地震安全性评价工作报告[R].西安:陕西大地地震工程勘察中心.
    何川,李林,张景,等.2014.隧道穿越断层破碎带震害机理研究[J].岩土工程学报,36(3):427-434.
    黄强兵,彭建兵,樊红卫,等.2009.西安地裂缝对地铁隧道的危害及防治措施研究[J].岩土工程学报,31(5):781-788.
    黄强兵.2009.地裂缝对地铁隧道的影响机制及病害控制研究[D].西安:长安大学.
    李天斌,徐正,王瑞兴.2016.基于发震断裂位移的汶川地震区地应力场突变特征反演分析[J].工程地质学报,24(5):760-767.
    孟振江,彭建兵,黄强兵,等.2017.基于断裂错动引起地铁隧道的变形响应研究[J].工程地质学报,25(6):1624-1632.
    彭建兵,张勤,黄强兵,等.2012.西安地裂缝灾害[M].北京:科学出版社:502-510.
    邵润萌.2011.断层错动作用下隧道工程损伤及岩土失效扩展机理研究[D].北京:北京交通大学.
    王帅帅,高波,隋传毅,等.2015.减震层减震原理及跨断层隧道减震技术振动台试验研究[J].岩土工程学报,37(6):1086-1092.
    信春雷,高波,周佳媚,等.2014.跨断层隧道设置常规抗减震措施振动台试验研究[J].岩石力学与工程学报,33(10):2047-2055.
    杨志华,兰恒星,张永双,等.2013.强震作用下穿越断层隧道围岩力学响应研究[J].工程地质学报,21(2):171-181.
    张涛,夏述光,谭显坤,等.2005.断裂构造对山区公路隧道选线与施工的影响研究[J].岩土力学,26(S2):275-278.
    张伟喜,孙飞,张志强.2017.正断层下隧道结构受力特征及设防长度研究[J].路基工程,(4):57-63.
    赵颖,郭恩栋,刘智,等.2014.走滑断层位错作用下城市地铁隧道损伤分析[J].岩土力学,35(S2):467-473.
    中华人民共和国行业标准编写组.2012.建筑地基基础设计规范(GB50007-2011)[S].北京:中国建筑工业出版社.
    中华人民共和国行业标准编写组.2015.混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700