正六边形钢管约束混凝土靶抗侵彻机理的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation on the anti-penetration mechanisms of hexagonal steel-tube-confined concrete targets
  • 作者:蒙朝美 ; 刘飞 ; 蒋志刚 ; 宋殿义 ; 谭清华
  • 英文作者:MENG Chaomei;LIU Fei;JIANG Zhigang;SONG Dianyi;TAN Qinghua;College of Basic Education,National University of Defense Technology;Aeronautics Engineering College,Air Force Engineering University;
  • 关键词:防护结构 ; 约束混凝土 ; 侵彻机理 ; 数值模拟
  • 英文关键词:protective structure;;confined concrete;;penetration mechanism;;numerical simulation
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:国防科技大学基础教育学院;空军工程大学航空工程学院;
  • 出版日期:2018-09-28
  • 出版单位:振动与冲击
  • 年:2018
  • 期:v.37;No.326
  • 基金:国家自然科学基金(51308539)
  • 语种:中文;
  • 页:ZDCJ201818018
  • 页数:6
  • CN:18
  • ISSN:31-1316/TU
  • 分类号:131-136
摘要
钢管约束混凝土靶的抗侵彻性能优于无约束混凝土靶。为了揭示钢管形状对抗侵彻机理的影响,运用ANSYS/LS-DYNA有限元软件,采用有限元-光滑粒子法,对比分析了正六边形和圆形钢管约束混凝土靶的侵彻过程和约束机理。结果表明:钢管对混凝土的约束效应可以分为应力波效应和弹丸扩孔阶段限制混凝土径向位移效应,且以后者为主;钢管形状对靶中应力和钢管变形均有影响。弹丸中心入射时,圆形钢管受径向均匀压力作用,应力沿圆周近似均匀分布,钢管壁处于简单面内拉伸状态;六边形钢管壁受不均匀内压作用,钢管壁产生面内拉伸变形和面外弯曲变形,角部向内弯曲变形增加了对混凝土的约束作用,并在对角线附近形成了高压力区,从而增大了侵彻阻力,提高了抗侵彻性能。
        Steel-tube-confined concrete( STCC) targets have superior anti-penetration performance over ordinary unconfined concrete targets. The penetration progress and confined mechanisms of hexagonal and circular STCC targets were analyzed by using the finite element-smoothed particle hydrodynamics method in the finite element package ANSYS/LS-DYNA to reveal the influence of steel-tube shape on penetration mechanisms. The results show that the steel-tube confinement effect consists of the stress wave effect and predominate displacement constraint effect on concrete during the cavity expansion progress. The profile of steel tube has influence on the distribution of stress and displacement of the steel tube. The stress distribution along the circumference of circular STCC targets is nearly uniform and the steel tube is in simple tensile state under radially uniform pressure for the case of normal penetration without any eccentricity,while there are in-plane tensile deformation and out-plane bending deformation for polygonal steel tubes under non-uniform inner pressure. Furthermore,the corners of hexagonal steel tubes expand little due to the bending displacement,which enhances the confinement to concrete and develops high-compressive regions near the diagonal in polygonal STCC targets.Thus,the penetration resistance is increased and the anti-penetration performance is improved.
引文
[1]闫焕明,张志刚,葛涛,等.防护工程中遮弹层的研究进展[J].兵器材料科学与工程,2016,39(1):127-132.YAN Huanming,ZHANG Zhigang,GE Tao,et al.Research process of bursting layer in protection engineering[J].Ordnance Material Science and Engineering,2016,39(1):127-132.
    [2]VOSSOUGHI F,OSTERTAG C P,MONTEIRO P J M,et al.Resistance of concrete protected by fabric to projectile impact[J].Cement and Conc Res,2007,37(1):96-106.
    [3]ABDEL-KADER M,FOUDA A.Effect of reinforcement on the response of concrete panels to impact of hard projectiles[J].International Journal of Impact Engineering,2014,63:1-17.
    [4]甄明,蒋志刚,万帆,等.钢管约束混凝土抗侵彻性能试验[J].国防科技大学学报,2015,37(3):121-127.ZHEN Ming,JIANG Zhigang,WAN Fan,et al.Steel tube confined concrete targets penetration experiments[J].Journal of National University of Defense Technology,2015,37(3):121-127.
    [5]WAN F,JIANG Z G,TAN Q H,et al.Response of steeltube-confined concrete targets to projectile impact[J].International Journal of Impact Engineering,2016,94:50-59.
    [6]蒋志刚,万帆,谭清华,等.钢管约束混凝土抗多发打击试验[J].国防科技大学学报,2016,38(3):117-123.JIANG Zhigang,WAN Fan,TAN Qinghua et al.Mult-hit experiments of steel-tube-confined concrete targets[J].Journal of National University of Defensee Technology,2016,38(3):117-123.
    [7]王起帆,石少卿,王征,等.蜂窝遮弹层抗弹丸侵彻实验研究[J].爆炸与冲击,2016,36(2):253-258.WANG Qifan,SHI Shaoqing,WANG Zheng,et al.Experimental study on penetration-resistance characteristics of honeycomb shelter[J].Explosion and Shoch Waves,2016,36(2):253-258.
    [8]武珺,王坚茹,陈智刚,等.弹丸对钢管混凝土结构冲击效应的数值模拟[J].火力与指挥控制,2013,38(4):107-110.WU Jun,WANG Jianru,CHEN Zhigang,et al.Simulation study of projectile impact effect on concrete-filled tube structure[J].File Control&Command Control,2013,38(4):107-110.
    [9]石少卿,王起帆,刘颖芳,等.仿生蜂窝遮弹层抗侵彻机理及数值模拟[J].防护工程,2013,35(4):45-49.SHI Shaoqing,WANG Qifan,LIU Yingfang,et al.Numerical simulation of anti-penetration characteristics of an alveolate layer[J].Protective Engineering,2013,35(4):45-49.
    [10]李季,褚召军,孙建虎,等.钢管钢纤维高强混凝土遮弹层抗侵彻数值模拟[J].后勤工程学院学报,2016,32(2):27-31.LI Ji,CHU Zhaojun,SUN Jianhu,et al.Numerical simulation of penetration resistance of shielding layer of steel fiber reinforced high strength concrete filled with steel tube[J].Journal of Logistical Engieering University,2016,32(2):27-31.
    [11]蒋志刚,甄明,刘飞,等.钢管约束混凝土抗侵彻机理的数值模拟[J].振动与冲击,2015,34(11):1-6.JIANG Zhigang,ZHEN Ming,LIU Fei,et al.Simulation of anti-penetration mechanism of steel tube confined concrete[J].Journal of Vibration and Shock,2015,34(11):1-6.
    [12]蒙朝美.多边形钢管约束混凝土靶抗侵彻机理研究[D].长沙:国防科学技术大学,2016.
    [13]蒙朝美,宋殿义,蒋志刚,等.多边形钢管约束混凝土靶抗侵彻性能试验研究[J].振动与冲击,2018,37(13):14-19.MENG Chaomei,SONG Dianyi,JIANG Zhigang,et al.Experimental research on anti-penetration performance of polygonal steel-tube-confined concrete targets[J].Journal of Vibration and Shock,2018,37(13):14-19.
    [14]吴世永,王伟力,江炎兰.钨合金弹侵彻圆柱壳靶板的数值模拟[J].四川兵工学报,2011,32(11):29-33.WU Shiyong,WANG Weili,JIANG Yanlan.Numerical simulation of penetration for tungsten-alloy projectile penetrating cylindrical shell target[J].Journal of Sichuan Ordnance,2011,32(11):29-33.
    [15]MURRAY Y D,ABU-ODEH A,BLIGH R.Evaluation of LS-DYNA concrete material model 159:FHWA-HRT-05-063[R].Washington D.C.:Concrete,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700