基于计算机模拟的支架铸钢件铸造工艺设计及优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Optimization of Steel Casting Process for Bracket Based on Computer Simulation
  • 作者:蔡虎 ; 王嘉诚 ; 付文笙 ; 曲元哲 ; 杨弋涛
  • 英文作者:CAI Hu;WANG Jia-cheng;FU Wen-sheng;QU Yuan-zhe;YANG Yi-tao;School of Materials Science and Engineering, Shanghai University;School of Communication and Information Engineering, Shanghai University;
  • 关键词:支架铸钢件 ; 铸造工艺优化 ; 数值模拟
  • 英文关键词:support steel casting;;casting process optimization;;numerical modeling
  • 中文刊名:JMCX
  • 英文刊名:Journal of Netshape Forming Engineering
  • 机构:上海大学材料科学与工程学院;上海大学通信与信息工程学院;
  • 出版日期:2019-07-10
  • 出版单位:精密成形工程
  • 年:2019
  • 期:v.11;No.61
  • 语种:中文;
  • 页:JMCX201904022
  • 页数:9
  • CN:04
  • ISSN:50-1199/TB
  • 分类号:159-167
摘要
目的对ZG270-500铸钢支架的铸造工艺进行优化设计,以达到工艺简单、成本低、操作简便、质量良好等要求。方法使用三维CAD软件和铸造模拟软件对相应铸造工艺方案进行了三维建模和铸造过程的模拟。针对工艺初始浇注系统设计了正放、倒放,底注式、阶梯式共4种不同组合的浇注方案。在对充型温度场进行模拟后,选择了倒放阶梯式与正放底注式浇注系统进行后续模拟。在对凝固进行模拟后,最终选择了正放底注式的方案并进行后续优化。在设计补缩系统时,通过多次调整冒口的位置与尺寸,以及冷铁的位置、尺寸与形状,达到工艺优化的效果。结果 4种初始方案中,倒放阶梯式浇注系统有利于顺序凝固,正放底注式浇注系统较为经济环保。凝固过程中,正放底注式浇注系统的疏松疏孔液相孤立区存在于铸件顶部,有利于补缩。初始补缩系统有效补缩了顶面两孔中心缺陷,优化后可使顶板和肋板的连接处,凝固最晚区域的缺陷大为改善。结论模拟表明,最终方案可基本消除铸件中的缺陷,保证铸件的质量与良好的工艺性。
        This paper aims to optimize the casting process of ZG 270-500 cast steel bracket, to achieve the requirements of simple process, low cost, simple operation and good quality. Three-dimensional CAD software and casting simulation software were used to model and simulate the casting process. In this process, the initial pouring system was designed with four different pouring schemes: forward pouring, backward pouring, bottom pouring and step pouring. After simulation of mold filling temperature field, the inverted step casting system and the positive bottom casting system were selected for subsequent simulation.After simulation of solidification, the positive bottom injection scheme was finally selected and for further optimization. In design of the feeding system, the position and size of the risers, as well as the position, size and shape of the chills were adjusted for several times to achieve process optimization. In the four initial schemes, the inverted step casting system was beneficial to sequential solidification, while the forward bottom casting system was more economical and environmentally friendly. The results of solidification process show that the liquid phase isolated zone of porosity and shrinkage cavity existed at the casting top was beneficial to feed shrinkage. The initial feeding system can effectively feed the center defect of two holes on the top surface.After optimization, the defect in the joint of roof and boards and the area with the latest solidification was greatly improved. The simulation results show that the final scheme can basically eliminate defects in the casting and ensure casting quality and good manufacturability.
引文
[1]张晓光,韦洲,杨雪.铸钢支架熔模铸造工艺优化[J].铸造技术,2018,39(5):1039-1041.ZHANG Xiao-guang,WEI Zhou,YANG Xue.Optimization of Investment Casting Process for Cast Steel Bracket[J].Foundry Technology,2008,39(5):1039-1041.
    [2]程琤.基于FLOW-3D的建筑铸钢件铸造过程仿真分析[J].热加工工艺,2019,48(5):117-120.CHENG Cheng.Simulation Analysis of Casting Process of Building Steel Castings Based on FLOW-3D[J].Hot Working Technology,2019,48(5):117-120.
    [3]陈世超,张艳君,朱德珑,等.支撑座铸钢件的铸造工艺及其优化[J].铸造工程,2016,40(4):1-6.CHEN Shi-chao,ZHANG Yan-jun,ZHU De-long,et al.Casting Technology and Optimization of Steel Castings with Support Stand[J].Casting Engineering,2016,40(4):1-6.
    [4]何氢玲,陈祖华,宋仲明.工程建筑用框架形结构铸钢节点铸造工艺设计[J].铸造,2019,68(5):512-515.HE Qing-ling,CHEN Zu-hua,SONG Zhong-ming.Casting Process Design of Casting Steel Joint with Frame Structure for Engineering Construction Projects[J].Foundry,2019,68(5):512-515.
    [5]GAO Yong,ZHANG Li-jing,GAO Wen-li,et al.Prediction and Improvement of Shrinkage Porosity in TiAl Based Alloy[J].China Foundry,2011,8(1):19―24.
    [6]顾瑞9),顾绳初,杨弋涛.基于ADSTEFAN模拟软件的蜗壳件铸造工艺优化[J].现代铸铁,2018,38(6):46-51.GU Rui-ying,GU Sheng-chu,YANG Yi-tao.Casting Method Optimizing of Volute Casting Based on ADSTEFAN Simulation Software[J].Modern Cast Iron,2018,38(6):46-51.
    [7]XU Qing-yan,LIU Bai-cheng,PAN Dong,et al.Progress on Modeling and Simulation of Directional Solidification of Super-alloy Turbine Blade Casting[J].China Foundry2012,9(1):69―77.
    [8]王嘉诚,曲元哲,沈楚伦,等.上倾倒框铸铝件铸造工艺设计及模拟优化[J].精密成形工程,2018,10(6):88-98.WANG Jia-cheng,QU Yuan-zhe,SHEN Chu-lun,et al.Casting Process Design around Aluminum Casting of Toppling Frame and Its Simulated Optimization[J].Journal of Netshape Forming Engineering,2018,10(6):88-98.
    [9]LIANG Cai-zhong,XIAO Bin-zhou,PENG Jiang,et al.Physical and Mathematical Simulations for Molten Steel Flow in a Large Ingot Casting Process with Double Bottom Argon Bubbling Porous Beams[J].Ironmaking Steelmaking,2019,46(5):431-442.
    [10]WANG Tong-min,LI Jia,WU Li,et al.Simulation Study on Three Casting Processes for a Marine Propeller Hub Body[J].China Foundry,2013,10(6):360-366.
    [11]李宏英,赵成志.铸造工艺设计[M].北京:机械工业出版社,2005.LI Hong-ying,ZHAO Cheng-zhi.Casting Process Design[M].Beijing:China Machine Press,2005.
    [12]胡红军,杨明波,龚喜兵,等.铸造工艺的数值模拟优化[J].兵器材料科学与工程,2006(6):51―53.HU Hong-jun,YANG Ming-bo,GONG Xi-bing,et al.Optimization of Casting Process by Numerical Simulation[J].Ordnance Material Science and Engineering,2006(6):51―53.
    [13]王再友,王泽华.铸造工艺设计及应用[M].北京:机械工业出版社,2016.WANG Zai-you,WANG Ze-hua.Casting Process Design and Application[M].Beijing:China Machine Press,2016.
    [14]张凯,李强,乔岩,等.铸钢件浇冒口系统的设计[J].科技经济导刊,2019,27(15):75.ZHANG Kai,LI Qiang,QIAO Yan,et al.Design of Steel Casting Riser System[J].Technology and Economic Guide,2019,27(15):75.
    [15]刘文川,向敬成.大型铸件有效浇注时间的计算[J].大型铸锻件,2000(4):14―20.LIU Wen-chuan,XIANG Jing-cheng.Calculation of Effective Pouring Time for Heavy Castings[J].Heavy Casting and Forging,2000(4):14―20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700