衰老对斑马鱼呼吸代谢和游泳行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of aging on the respiratory metabolism and swimming behavior of zebrafish
  • 作者:高泉 ; 吕为群
  • 英文作者:GAO Quan;Lü Weiqun;National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources,Ministry of Education,Shanghai Ocean University;International Research Center for Marine Biosciences, Ministry of Science and Technology,Shanghai Ocean University;
  • 关键词:斑马鱼 ; 衰老 ; 昼夜节律 ; 应激行为 ; 呼吸代谢
  • 英文关键词:zebrafish;;aging;;circadian rhythm;;stress behavior;;respiratory metabolism
  • 中文刊名:SSDB
  • 英文刊名:Journal of Shanghai Ocean University
  • 机构:上海海洋大学水产科学国家级实验教学示范中心;上海海洋大学水产种质资源发掘与利用教育部重点实验室;上海海洋大学科技部海洋生物科学国际联合研究中心;
  • 出版日期:2019-03-15
  • 出版单位:上海海洋大学学报
  • 年:2019
  • 期:v.28
  • 基金:国家自然科学基金(31572599,31072228,41376134)
  • 语种:中文;
  • 页:SSDB201902005
  • 页数:11
  • CN:02
  • ISSN:31-2024/S
  • 分类号:43-53
摘要
以模式生物斑马鱼作为实验对象,首先从躯体形态和繁殖能力上对6月龄与30月龄斑马鱼的特征进行了区分,而后分别比较了6月龄和30月龄斑马鱼在昼夜节律、应激行为和呼吸代谢方面的差异,研究衰老对斑马鱼代谢和行为的影响。结果显示:30月龄斑马鱼脊柱弯曲,并且在产卵量、受精率、孵化率和成活率等方面均低于6月龄斑马鱼,显示出明显的衰老特征。6月龄斑马鱼昼夜间的游泳行为具有明显的节律性,与30月龄斑马鱼相比,其白天活动量大,夜晚静息,昼夜间游泳行为具有显著差异。当遭受驱逐刺激后,6月龄斑马鱼的快速游泳距离、快速游泳时间和平均游泳速度均高于30月龄斑马鱼(P <0. 05);当遭受光照刺激后,6月龄斑马鱼的快速游泳距离和平均游泳速度高于30月龄斑马鱼(P <0. 05)。应激行为实验结果表明:衰老斑马鱼的应激游泳能力显著低于年轻斑马鱼。30月龄斑马鱼的标准代谢率(SMR)、最大代谢率(MMR)和代谢范围(MS)低于6月龄斑马鱼(P <0. 05),与应激游泳行为的差异一致。繁殖、代谢和应激游泳行为是鱼类重要的生理活动,研究衰老与年轻斑马鱼的生理行为,有助于进一步理解衰老对机体生理功能的影响,并为深入探究衰老对斑马鱼代谢和行为影响的内在机制奠定基础。
        Aging is a series of complex life processes that occurs in living organisms and usually leads to a series of degenerative manifestations in reproduction,metabolism,stress,and exercise behavior. In this experiment,the model organism zebrafish was used as an experimental animal. The characteristics of 6-month and 30-month zebrafish were distinguished based on the body morphology and reproductive ability,and the circadian rhythm, stress behavior and respiratory metabolism of 6-month and 30-month zebrafish were compared,in order to investigate the effects of aging on metabolism and behavior of zebrafish. The results showed that the spine of 30-month zebrafish was curved and the reproductive performance of old fish was lower than the 6-month zebrafish in terms of fecundity,fertilization rate,hatching rate and survival rate,showing obvious aging characteristics. The swimming behavior of the 6-month zebrafish dispalys an obvious circadian rhythm. Compared with the 30-month zebrafish,6-month zebrafish is active in the daytime,and always rest at night. The swimming behavior in the daytime and nighttime is significantly different. When 6-month zebrafish suffered from chase-stress,their large movement distance,large movement time and average swimming speed were higher than those of 30-month zebrafish( P < 0. 05). When exposed to light-stress,the large movement distance and average swimming speed of 6-month zebrafish were higher than those of 30-months zebrafish( P < 0. 05). The results of stress behavior showed that the stress response ability in aging zebrafish is significantly weaker than that of young zebrafish. The standard metabolic rate( SMR),maximum metabolic rate( MMR),and metabolic space( MS) of 30-month zebrafish were lower than those of 6-month zebrafish( P < 0. 05),which was consistent with the difference in stressed swimming behavior. Reproduction,metabolism and stress behavior are important physiological activities of fish, and investigating these physiological responses and behaviors in aging and young zebrafish can help to understand the effects of aging on the physiological functions of organism,and furthermore,the molecular mechanism of metabolism and behavior associated with aging.
引文
[1]JOHNSON F B,SINCLAIR D A,GUARENTE L.Molecular biology of aging[J].Cell,1999,96(2):291-302.
    [2]BL,FARDE L.Dopamine and cognitive functioning:brain imaging findings in Huntington’s disease and normal aging[J].Scandinavian Journal of Psychology,2001,42(3):287-296.
    [3]DUGAR A,KECK B J,MAINES L W,et al.Compensatory responses in the aging hippocampal serotonergic system following neurodegenerative injury with 5,7‐dihydroxytryptamine[J].Synapse,2001,39(2):109-121.
    [4]TAKEDA T.Senescence-accelerated mouse(SAM):with special reference to age-associated pathology and their modulation[J].Japanese Journal of Hygiene,1996,51(2):569-578.
    [5]BEYNON A L,THOME J,COOGAN A N.Age and time of day influences on the expression of transforming growth factorbeta and phosphorylated SMAD3 in the mouse suprachiasmatic and paraventricular nuclei[J].Neuroimmunomodulation,2009,16(6):392-399.
    [6]GIBSON E M,WILLIAMS III W P,KRIEGSFELD L J.Aging in the circadian system:considerations for health,disease prevention and longevity[J].Experimental Gerontology,2009,44(1/2):51-56.
    [7]NAKAMURA T J,NAKAMURA W,YAMAZAKI S,et al.Age-related decline in circadian output[J].Journal of Neuroscience,2011,31(28):10201-10205.
    [8]HACK M A.The effects of mass and age on standard metabolic rate in house crickets[J].Physiological Entomology,1997,22(4):325-331.
    [9]FALI T,VALLET H,SAUCE D.Impact of stress on aged immune system compartments:Overview from fundamental to clinical data[J].Experimental Gerontology,2018,105:19-26.
    [10]BEN-SHLOMO R,KYRIACOU C P.Circadian rhythm entrainment in flies and mammals[J].Cell Biochemistry and Biophysics,2002,37(2):141-156.
    [11]DUNLAP J C.Molecular bases for circadian clocks[J].Cell,1999,96(2):271-290.
    [12]NOCHE R R,LU P N,GOLDSTEIN-KRAL L,et al.Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain[J].BMC Neuroscience,2011,12:7.
    [13]ZHDANOVA I V.Sleep and its regulation in zebrafish[J].Reviews in the Neurosciences,2011,22(1):27-36.
    [14]BEN-MOSHE L Z,ALON S,VALLONE D,et al.Genetically blocking the zebrafish pineal clock affects circadian behavior[J].PLo S Genetics,2016,12(11):e1006445.
    [15]HASTINGS M H,REDDY A B,MAYWOOD E S.A clockwork web:circadian timing in brain and periphery,in health and disease[J].Nature Reviews Neuroscience,2003,4(8):649-661.
    [16]王国强,王雯.应激反应对鱼类影响的研究进展[J].安徽农业科学,2009,37(24):11579-11580.WANG G Q,WANG W.Research progress in the effect of the stress response on fish[J].Journal of Anhui Agricultural Sciences,2009,37(24):11579-11580.
    [17]王文博,李爱华.环境胁迫对鱼类免疫系统影响的研究概况[J].水产学报,2002,26(4):368-374.WANG W B,LI A H.The effect of environmental stress to fish immune system[J].Journal of Fisheries of China,2002,26(4):368-374.
    [18]PICKERING A D.Rainbow trout husbandry:management of the stress response[J].Aquaculture,1992,100(1/3):125-139.
    [19]KLINGER H,DELVENTHAL H,HILGE V.Water quality and stocking density as stressors of channel catfish(Ictalurus punctatus Raf.)[J].Aquaculture,1983,30(1/4):263-272.
    [20]BARTON B A,IWAMA G K.Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids[J].Annual Review of Fish Diseases,1991,1:3-26.
    [21]洪磊,张秀梅.环境胁迫对鱼类生理机能的影响[J].海洋科学进展,2004,22(1):114-121.HONG L,ZHANG X M.Effects of environmental stress on physiological function of fish[J].Advances in Marine Science,2004,22(1):114-121.
    [22]KISHI S,UCHIYAMA J,BAUGHMAN A M,et al.The zebrafish as a vertebrate model of functional aging and very gradual senescence[J].Experimental Gerontology,2003,38(7):777-786.
    [23]毋玉婷,郭宝英,祁鹏志,等.水生衰老模式动物研究进展[J].浙江海洋学院学报(自然科学版),2017,36(1):63-71.WU Y T,GUO B Y,ZOU P Z,et al.Research progress on aquatic aging model animals[J].Journal of Zhejiang Ocean University(Natural Science),2017,36(1):63-71.
    [24]GERHARD G S,KAUFFMAN E J,WANG X J,et al.Life spans and senescent phenotypes in two strains of Zebrafish(Danio rerio)[J].Experimental Gerontology,2002,37(8/9):1055-1068.
    [25]ZON L I,PETERSON R T.In vivo drug discovery in the zebrafish[J].Nature Reviews Drug Discovery,2005,4(1):35-44.
    [26]IRONS T D,MACPHAIL R C,HUNTER D L,et al.Acute neuroactive drug exposures alter locomotor activity in larval zebrafish[J].Neurotoxicology and Teratology,2010,32(1):84-90.
    [27]CHEN T H,WANG Y H,WU Y H.Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish:implications for behavioral toxicity bioassays[J].Aquatic Toxicology,2011,102(3/4):162-166.
    [28]MARTNEZ-SALES M,GARCA-XIMNEZ F,ESPINS FJ.Zebrafish as a possible bioindicator of organic pollutants with effects on reproduction in drinking waters[J].Journal of Environmental Sciences,2015,33:254-260.
    [29]邹华锋,冯宇红,兰兆辉,等.低温处理对斑马鱼CNSS系统应激相关基因的影响[J].江苏农业科学,2016,44(8):43-46.ZOU H F,FENG Y H,LAN Z H,et al.Effect of low temperature treatment on stress-related genes in zebrafish CNSS system[J].Jiangsu Agricultural Sciences,2016,44(8):43-46.
    [30]彭姜岚,曾令清,曹振东,等.驱赶和空气暴露对南方鲇耗氧率和呼吸频率的影响[J].淡水渔业,2007,37(5):7-10.PENG J L,ZENG L Q,CAO Z D,et al.Effects of chase and air exposure on oxygen consumption and respiration frequency in silurus meridionalis[J].Freshwater Fisheries,2007,37(5):7-10.
    [31]WOODHEAD A D.Aging changes in the heart of a poeciliid fish,the guppy Poecilia reticulatus[J].Experimental Gerontology,1984,19(6):383-391.
    [32]WOODHEAD A D,POND V,DAILEY K.Aging changes in the kidneys of two poeciliid fishes,the guppy Poecilia reticulatus and the Amazon molly P.formosa[J].Experimental Gerontology,1983,18(3):211-221.
    [33]CAHILL G M,HURD M W,BATCHELOR M.Circadian rhythmicity in the locomotor activity of larval zebrafish[J].Neuroreport,1998,9(15):3445-3449.
    [34]CAHILL G M.Clock mechanisms in zebrafish[J].Cell and Tissue Research,2002,309(1):27-34.
    [35]WHITMORE D,FOULKES N S,STRHLE U,et al.Zebrafish clock rhythmic expression reveals independent peripheral circadian oscillators[J].Nature Neuroscience,1998,1(8):701-707.
    [36]CERMAKIAN N,WHITMORE D,FOULKES N S,et al.Asynchronous oscillations of two zebrafish clock partners reveal differential clock control and function[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97(8):4339-4344.
    [37]DELAUNAY F,THISSE C,MARCHAND O,et al.An inherited functional circadian clock in zebrafish embryos[J].Science,2000,289(5477):297-300.
    [38]FAHRENKRUG J,GEORG B,HANNIBAL J,et al.Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary[J].Endocrinology,2006,147(8):3769-3776.
    [39]WOOD P A,YANG X W,HRUSHESKY W J M.Clock genes and cancer[J].Integrative Cancer Therapies,2009,8(4):303-308.
    [40]KENNAWAY D J.The role of circadian rhythmicity in reproduction[J].Human Reproduction Update,2005,11(11):91-101.
    [41]ZHENG X Z,SEHGAL A.Probing the relative importance of molecular oscillations in the circadian clock[J].Genetics,2008,178(3):1147-1155.
    [42]赵静,朱祥伟,徐挺,等.BDE17及OH-BDE17暴露对斑马鱼幼鱼的运动行为效应[J].环境化学,2015,34(7):1239-1245.ZHAO J,ZHU X W,XU T,et al.Locomotor behavior effect in zebrafish larvae after exposure to BDE17 and OH-BDE17[J].Environmental Chemistry,2015,34(7):1239-1245.
    [43]VAN LEEUWEN J L,VOESENEK C J,MLLER U K.How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish[J].Journal of the Royal Society Interface,2015,12(110):0479.
    [44]MLLER U K,VAN LEEUWEN J L.Swimming of larval zebrafish:ontogeny of body waves and implications for locomotory development[J].Journal of Experimental Biology,2004,207(5):853-868.
    [45]BUDICK S A,O’MALLEY D M.Locomotor repertoire of the larval zebrafish:swimming,turning and prey capture[J].Journal of Experimental Biology,2000,203(17):2565-2579.
    [46]YAO Y Y,LI X Q,ZHANG B B,et al.Visual cuediscriminative dopaminergic control of visuomotor transformation and behavior selection[J].Neuron,2016,89(3):598-612.
    [47]史慧勤,张利军,苑晓燕,等.氯化镉暴露对斑马鱼幼鱼神经行为毒性作用[J].生态毒理学报,2013,8(3):374-380.SHI H Q,ZHANG L J,YUAN X Y,et al.Toxic effects of cadmium chloride exposure on neurobehavior of zebrafish larvae[J].Asian Journal of Ecotoxicology,2013,8(3):374-380.
    [48]REIDY S P,KERR S R,NELSON J A.Aerobic and anaerobic swimming performance of individual Atlantic cod[J].Journal of Experimental Biology,2000,203(2):347-357.
    [49]ZHANG W,CAO Z D,FU S J.The effects of dissolved oxygen levels on the metabolic interaction between digestion and locomotion in Cyprinid fishes with different locomotive and digestive performances[J].Journal of Comparative Physiology B,2012,182(5):641-650.
    [50]FITZGIBBON Q P,STRAWBRIDGE A,SEYMOUR R S.Metabolic scope,swimming performance and the effects of hypoxia in the mulloway,Argyrosomus japonicus(Pisces:Sciaenidae)[J].Aquaculture,2007,270(1/4):358-368.
    [51]唐国伟.温度与个体标准代谢对鲫鱼运动后过量耗氧、常规代谢及自发运动的影响[D].重庆:重庆师范大学,2014.TANG G W.The relationship between temperature,interspecies variation in standard metabolic rate and excess postexhaustive exercise oxygen consumption,routine metabolic rate,spontaneous swimming in juvenile Carassius carassius[D].Chongqing:Chongqing Normal University,2014.
    [52]DOMENICI P,BLAKE R.The kinematics and performance of fish fast-start swimming[J].Journal of Experimental Biology,1997,200(8):1165-1178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700