全球陆地生态系统光合作用与呼吸作用的温度敏感性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature sensitivity of photosynthesis and respiration in terrestrial ecosystems globally
  • 作者:游桂莹 ; 张志渊 ; 张仁铎
  • 英文作者:YOU Guiying;ZHANG Zhiyuan;ZHANG Renduo;School of Environmental Science and Engineering,Sun Yat-sen University,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology;Fujian Agriculture and Forestry University,College of Resources and Environmental;
  • 关键词:光合作用 ; 呼吸作用 ; Q_(10) ; 纬度 ; 植被类型 ; 气候类型
  • 英文关键词:photosynthesis;;respiration;;Q10;;latitude;;plant functional types;;climate types
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中山大学环境科学与工程学院广东省环境污染控制与修复重点实验室;福建农林大学资源与环境学院;
  • 出版日期:2018-09-26 09:34
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(41471181,51179212)
  • 语种:中文;
  • 页:STXB201823014
  • 页数:8
  • CN:23
  • ISSN:11-2031/Q
  • 分类号:129-136
摘要
基于全球647套通量数据,定量分析了全球尺度下生态系统光合作用和呼吸作用的温度敏感性(Q_(10))随纬度、气候和植被的分布规律。结果表明:在全球尺度下,光合作用和呼吸过程的温度敏感性(Q_(10,G)和Q_(10,R))都随纬度的升高而增加,其中Q_(10,G)和Q_(10,R)的均值分别为3.99±0.21和2.28±0.074。除热带多树草原、常绿落叶林外,Q_(10,G)均大于Q_(10,R)值。不同植被类型的温度敏感性存在显著性差异,表现为:针叶林>阔叶林;落叶林>常绿林,其中生态系统的季节性变异是造成差异的主要原因。当植被类型和纬度区域共同影响Q_(10)值时,植被类型对Q_(10)值的总变异贡献更大。气候类型对Q_(10,G)和Q_(10,R)都有显著影响。在气候带上,干旱带的Q_(10,G)最小,而冷温带的Q_(10,G)最高。不同气候类型下(除温带草原气候外)的Q_(10,G)都大于Q_(10,R)。在极端条件下,温度可能不在是主导因素,而水分对温度敏感性的影响不可忽略。
        Based on 647 datasets of eddy covariance fluxes across the world,we analyzed the relationships of the temperature sensitivity( Q_(10)) values of photosynthesis( Q_(10,G)) and respiration( Q_(10,R)) processes of the terrestrial ecosystems with latitude,climate types,and plant functional types. Our results showed that both Q_(10,G)and Q_(10,R)increased with latitude; Q_(10,G)and Q_(10,R)values were 3.99 ± 0.21 and 2.28 ± 0.074,respectively. Except woody savannas,for most of plant functional types,Q_(10,G)values were higher than Q_(10,R)values. Temperature sensitivity of ecosystem respiration and photosynthesis differed across plant functional types,which is mainly caused by variation in seasonality. Both Q_(10,G)and Q_(10,R) values of ecosystems in coniferous forests were greater than those in broad-leaved forests were,and these values were higher in deciduous forests than in evergreen forests. Two-way analysis of variance of Q_(10) among the latitude and plant functional types revealed that plant functional types contributed the most to the total variation of Q_(10). Both Q_(10,G)and Q_(10,R)were affected by climate types. Among the climatic zones,the lowest Q_(10,G)value was found in the arid region,whereas the largest was obtained in cold-temperate region. Except for temperate grasslands,photosynthesis was more sensitive to temperature than respiration was among different climate types. Under extreme conditions,temperature may not be the dominant factor,whereas the effect of soil water content should not be ignored. Further studies are needed to investigate the response of temperature sensitivity of ecosystem respiration to the variation in water availability.
引文
[1]King A W,Gunderson C A,Post W M,Weston D J,Wullschleger S D.Plant respiration in a warmer world.Science,2006,312(5773):536-537.
    [2]Piao S L,Luyssaert S,Ciais P,Janssens I A,Chen A P,Cao C,Fang J Y,Friedlingstein P,Luo Y Q,Wang S P.Forest annual carbon cost:a global-scale analysis of autotrophic respiration.Ecology,2010,91(3):652-661.
    [3]Mahecha M D,Reichstein M,Carvalhais N,Lasslop G,Lange H,Seneviratne S I,Vargas R,Ammann C,Arain M A,Cescatti A,Janssens I A,Migliavacca M,Montagnani L,Richardson A D.Response to comment on"global convergence in the temperature sensitivity of respiration at ecosystem level".Science,2011,331(6022):1265.
    [4]Ciais P,Reichstein M,Viovy N,Granier A,Ogée J,Allard V,Aubinet M,Buchmann N,Bernhofer C,Carrara A,Chevallier F,De Noblet N,Friend A D,Friedlingstein P,Grünwald T,Heinesch B,Keronen P,Knohl A,Krinner G,Loustau D,Manca G,Matteucci G,Miglietta F,Ourcival J M,Papale D,Pilegaard K,Rambal S,Seufert G,Soussana J F,Sanz M J,Schulze E D,Vesala T,Valentini R.Europe-wide reduction in primary productivity caused by the heat and drought in 2003.Nature,2005,437(7058):529-533.
    [5]Braswell B H,Schimel D S,Linder E,Moore III B.The response of global terrestrial ecosystems to interannual temperature variability.Science,1997,278(5339):870-873.
    [6]Lu M,Zhou X H,Yang Q,Li H,Luo Y Q,Fang C M,Chen J K,Yang X,Li B.Responses of ecosystem carbon cycle to experimental warming:a meta-analysis.Ecology,2013,94(3):726-738.
    [7]Huntingford C,Cox P M,Lenton T M.Contrasting responses of a simple terrestrial ecosystem model to global change.Ecological Modelling,2000,134(1):41-58.
    [8]王为民,王晨,李春俭,林伟宏.大气二氧化碳浓度升高对植物生长的影响.西北植物学报,2000,20(4):676-83.
    [9]Niu S L,Li Z X,Xia J Y,Han Y,Wu M Y,Wan S Q.Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China.Environmental and Experimental Botany,2008,63(1/3):91-101.
    [10]Davidson E A,Janssens I A,Luo Y Q.On the variability of respiration in terrestrial ecosystems:moving beyond Q.Global Change Biology,2006,12(2):154-164.
    [11]Vesala T,Launiainen S,Kolari P,Pumpanen J,Sevanto S,Hari P,Nikinmaa E,Kaski P,Mannila H,Ukkonen E,Piao S L,Ciais P.Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland.Biogeosciences,2010,7(1):163-176.
    [12]FLUXNET 2015 Dataset.http://fluxnet.fluxdata.org/sites/site-summary/.
    [13]Goulden M L,Munger J W,Fan S M,Daube B C,Wofsy S C.Measurements of carbon sequestration by long‐term eddy covariance:methods and a critical evaluation of accuracy.Global Change Biology,1996,2(3):169-182.
    [14]Massman W J,Lee X.Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges.Agricultural and Forest Meteorology,2002,113(1/4):121-144.
    [15]Griffis T J,Black T A,Gaumont-Guay D,Drewitt G B,Nesic Z,Barr A G,Morgenstern K,Kljun N.Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest.Agricultural and Forest Meteorology,2004,125(3/4):207-223.
    [16]Mahecha M D,Reichstein M,Carvalhais N,Lasslop G,Lange H,Seneviratne S I,Vargas R,Ammann C,Arain M A,Cescatti A,Janssens I A,Migliavacca M,Montagnani L,Richardson A D.Global convergence in the temperature sensitivity of respiration at ecosystem level.Science,2010,329(5993):838-840.
    [17]W J.Lectures on theoretical and physical chemistry le9ons de chimie physique.Nature,1901,63(1632):343-344.
    [18]Bliss L C,Heal O W,Moore J J.Tundra Ecosystems:A Comparative Analysis.Cambridge:Cambridge University Press,1981.
    [19]Chabot B F,Mooney H A.Physiological Ecology of North American Plant Communities.New York:Chapman and Hall,1985.
    [20]王春权,孟宪民,张晓光,夏丹丹.陆地生态系统碳收支/碳平衡研究进展.资源开发与市场,2009,25(2):165-171.
    [21]Song B,Niu S L,Luo R S,Luo Y Q,Chen J Q,Yu G R,Olejnik J,Wohlfahrt G,Kiely G,Noormets A,Montagnani L,Cescatti A,Magliulo V,Law B E,Lund M,Varlagin A,Raschi A,Peichl M,Nilsson M B,Merbold L.Divergent apparent temperature sensitivity of terrestrial ecosystem respiration.Journal of Plant Ecology,2014,7(5):419-428.
    [22]Zhou T,Shi P J,Hui D F,Luo Y Q.Global pattern of temperature sensitivity of soil heterotrophic respiration(Q10)and its implications for carbonclimate feedback.Journal of Geophysical Research,2009,114(G2):G02016.
    [23]徐满厚,薛娴.气候变暖对陆地植被-土壤生态系统的影响研究.生命科学,2012,24(5):492-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700