静电辅助多孔液体的制备及特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and characterization of electrostatic-assisted porous liquid
  • 作者:生丽莎 ; 陈振乾
  • 英文作者:SHENG Lisha;CHEN Zhenqian;School of Energy and Environment, Southeast University;Jiangsu Province Key Laboratory of Solar Energy Science and Technology;
  • 关键词:多孔液体 ; 中空SiO_2颗粒 ; 聚合咪唑阳离子 ; 静电作用 ; 流动性
  • 英文关键词:porous liquid;;hollow SiO_2 particle;;polymeric imidazolium cation;;electrostatic interaction;;fluidity
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:东南大学能源与环境学院;江苏省太阳能技术重点实验室;
  • 出版日期:2018-12-05 14:22
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51676037)
  • 语种:中文;
  • 页:HGSZ201903042
  • 页数:8
  • CN:03
  • ISSN:11-1946/TQ
  • 分类号:383-390
摘要
以硬模法制备的纳米中空SiO_2颗粒为腔洞结构,利用聚合咪唑阳离子与SiO_2的静电作用使SiO_2颗粒表面带正电荷,在外表面冠以磺化聚乙二醇赋予中空SiO_2颗粒流动性,制备得到静电辅助的中空二氧化硅多孔液体。性能表征表明多孔液体具有大小约为10 nm的孔径均一的球形腔洞,多孔液体的中空SiO_2含量约为13%(质量),室温条件下多孔液体的黏度为2.25 Pa·s,表现出良好的流动性。模拟结果得到聚合咪唑阳离子与中空SiO_2的吸附能为279.55 kJ/mol,证实聚合咪唑阳离子可以紧密黏附在中空SiO_2表面。采用的静电辅助表面修饰的方法为设计与制备多孔液体提供了一条新思路。
        Electrostatic-assisted hollow silica porous liquid was here obtained. First, nano-hollow SiO_2 particles were prepared by hard template, which took the role of pore structures of porous liquid. Then the surface of SiO_2 particles was positively charged by the electrostatic action of the polymeric imidazolium cation. Finally, sulfonated polyethylene glycol was added on the surface of hollow SiO_2 particles to obtain the fluidity. As the characterizations of properties revealed, porous liquid had a spherical cavity with a uniform pore size of about 10 nm and the content of hollow SiO_2 in porous liquid was about 13% by mass. Porous liquid had a viscosity of 2.25 Pa · s at room temperature, which revealed a good fluidity. Simulation results showed that the physisorption energy of the most stable optimized structure was 279.55 kJ/mol, which indicated a strong interaction between hollow SiO_2 and polymeric imidazolium cation. The method of electrostatically assisted surface modification provides a new idea for designing and preparing porous liquids.
引文
[1]Zhou H C,Long J R,Yaghi O M.Introduction to metal-organic frameworks[J].Chemical Reviews,2012,112(2):673-674.
    [2]Zhang W,Xiong R G.Ferroelectric metal-organic frameworks[J].Chemical Reviews,2012,112(2):1163-1195.
    [3]Zhang Y B,Su J,Furukawa H,et al.Single-crystal structure of a covalent organic framework[J].Journal of the American Chemical Society,2013,135(44):16336-16339.
    [4]Waller P J,Gandara F,Yaghi O M.Cheminform abstract:chemistry of covalent organic frameworks[J].Cheminform,2016,47(5):636.
    [5]Teng B,Pei C,Zhang D,et al.Gas storage in porous aromatic frameworks(PAFs)[J].Energy&Environmental Science,2011,4(10):3991-3999.
    [6]Chakraborty B,Dalui M,Sikdar B K.Design of a reliable cache system for heterogeneous CMPs[J].Journal of Circuits Systems&Computers,2018,(3):1850219.
    [7]Ayed C,Silva L C D,Wang D,et al.Designing conjugated microporous polymers for visible light-promoted photocatalytic carbon-carbon double bond cleavage in aqueous medium[J].Journal of Materials Chemistry A,2018,6(44):22145-22151.
    [8]Niamh O,Nicola G,James S L.Porous liquids[J].Chemistry,2007,13(11):3020-3025.
    [9]James S L.The dam bursts for porous liquids[J].Advanced Materials,2016,28(27):5712-5716.
    [10]李彦霖,段尊斌,霍添,等.多孔液体新型材料研究及应用进展[J].化工进展,2017,36(4):1342-1350.Li Y L,Duan Z B,Huo T,et al.Progresses in exploration and application of porous liquid materials[J].Chemical Industry and Engineering Progress,2017,36(4):1342-1350.
    [11]李晓强,丁玉栋,廖强,等.多孔液体及其二氧化碳气体分离研究进展[J].化工进展,2017,36(9):3362-3372.Li X Q,Ding Y D,Liao Q,et al.Review on porous liquids and its application in carbon dioxide sequestration[J].Chemical Industry and Engineering Progress,2017,36(9):3362-3372.
    [12]Atwood J L,Barbour L J,Jerga A,et al.Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity[J].Science,2002,298(5595):1000-1002.
    [13]Ripmeester J A,Enright G D,Ratcliffe C I,et al.What we have learned from the study of solid p-tert-butylcalix[4]arene compounds[J].Chemical Communications,2006,38(48):4986-4996.
    [14]Caira M R,Bourne S A,Mhlongo W T,et al.New crystalline forms of permethylated beta-cyclodextrin[J].Chemical Communications,2004,10(19):2216-2217.
    [15]Giri N,Davidson C,Melaugh G,et al.Alkylated organic cages:from porous crystals to neat liquids[J].Chemical Science,2012,3(6):2153-2157.
    [16]Melaugh G,Giri N,Davidson C E,et al.Designing and understanding permanent microporosity in liquids[J].Physical Chemistry Chemical Physics,2014,16(20):9422-9431.
    [17]Giri N,Pópolo M G D,Melaugh G,et al.Liquids with permanent porosity[J].Nature,2015,527(7577):216-220.
    [18]Zhang F,Yang F,Huang J,et al.Thermodynamics and kinetics of gas storage in porous liquids[J].Journal of Physical Chemistry B,2016,120(29):7195-7200.
    [19]Greenway R L,Holden D,Eden E G B,et al.Understanding gas capacity,guest selectivity,and diffusion in porous liquids[J].Chemical Science,2017,8(4):2640-2651.
    [20]Shan W,Fulvio P F,Kong L,et al.New class of typeⅢporous liquids:a promising platform for rational adjustment of gas sorption behavior[J].ACS Appl.Mater.Interfaces,2017,10(1):32-36.
    [21]Liu S,Liu J,Hou X,et al.Porous liquid:a stable ZIF-8 colloid in ionic liquid with permanent porosity[J].Langmuir,2018,34(12):3654-3660.
    [22]Bourlinos A B,Giannelis E P,Zhang Q,et al.Surfacefunctionalized nanoparticles with liquid-like behavior:the role of the constituent components[J].The European Physical Journal E-Soft Matter,2006,20(1):109-117.
    [23]Fernandes N J,Wallin T J,Vaia R A,et al.Cheminform abstract:nanoscale ionic materials[J].Cheminform,2014,26(1):84-96.
    [24]Petit C,Park Y,Lin K Y A,et al.Spectroscopic investigation of the canopy configurations in nanoparticle organic hybrid materials of various grafting densities[J].Journal of Physical Chemistry C,2011,116(1):516-525.
    [25]Lin K Y,Park A H.Effects of bonding types and functional groups on CO2capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials[J].Environmental Science&Technology,2011,45(15):6633-6639.
    [26]Park Y,Decatur J,Lin K Y,et al.Investigation of CO2capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization[J].Physical Chemistry Chemical Physics,2011,13(40):18115-18122.
    [27]Lin K Y A,Petit C,Park A H A.Effect of SO2on CO2capture using liquid-like nanoparticle organic hybrid materials[J].Energy&Fuels,2013,27(8):4167-4174.
    [28]Park Y,Petit C,Han P,et al.Effect of canopy structures and their steric interactions on CO2sorption behavior of liquid-like nanoparticle organic hybrid materials[J].RSC Advances,2014,4(17):8723-8726.
    [29]Zhang J,Chai S,Qiao Z,et al.Porous liquids:a promising class of media for gas separation[J].Angewandte Chemie International Edition,2014,54(3):932-936.
    [30]Shi T,Zheng Y,Wang T,et al.Effect of pore size on the carbon dioxide adsorption behavior of porous liquids based on hollow silica[J].Chemphyschem,2018,19(1):130-137.
    [31]Dai S,Li P,Schott J A,et al.Electrostatic-assisted liquefaction of porous carbons[J].Angewandte Chemie International Edition,2017,56(47):14958-14962.
    [32]Lin K Y.Design,synthesis and evaluation of liquid-like nanoparticle organic hybrid materials(NOHMs)for carbon dioxide capture[D].New York:Columbia University,2012.
    [33]张志强,屈一新,任慧.纳米SiO2物理吸附乙醇的密度泛函研究[J].物理化学学报,2006,22(7):820-825.Zhang Z Q,Qu Y X,Ren H.Density functional theory studies on ethanol physisorption on ultrafine silica[J].Acta Physico-Chimica Sinica,2006,22(7):820-825.
    [34]Zhuravlev L T.The surface chemistry of amorphous silica.Zhuravlev model[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2000,173(1):1-38.
    [35]Andaelm J,King-Smith R D,Fitzgerald G.Geometry optimization of solids using delocalized internal coordinates[J].Chemical Physics Letters,2001,335(3):321-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700