改性石墨烯/丁腈橡胶纳米复合材料的制备及性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of modified graphene/NBR nanocomposites and performance
  • 作者:唐功庆 ; 解希铭 ; 孙攀 ; 王丽丽 ; 李绍宁
  • 英文作者:TANG Gong-qing;XIE Xi-ming;SUN Pan;WANG Li-li;LI Shao-ning;Yanshan Branch,Sinopec Beijing Research Institute of Chemical Industry;
  • 关键词:氧化石墨烯 ; 二乙基甲苯二胺 ; 丁腈橡胶 ; 拉伸强度 ; 电导率
  • 英文关键词:graphene oxide;;diethyltoluene diamine;;nitrile-butadiene rubber;;tensile strength;;electrical conductivity
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:中国石油化工股份有限公司北京北化院燕山分院;
  • 出版日期:2019-02-20
  • 出版单位:现代化工
  • 年:2019
  • 期:v.39;No.388
  • 语种:中文;
  • 页:XDHG201902040
  • 页数:4
  • CN:02
  • ISSN:11-2172/TQ
  • 分类号:187-190
摘要
通过简单的回流氧化石墨烯(GO)和二乙基甲苯二胺(E-100)成功实现氧化石墨烯的原位功能化还原,制备了导电及表面修饰的氧化石墨烯(GO-E100),其电导率由GO的1. 0×10-7S/m提高到1 S/m。此外,制备的GO-E100有效地增强了以丁腈橡胶(NBR)为基体的柔性复合材料的力学性能和导电性能。当GO-E100在复合材料中的质量分数为4. 2%时,复合材料电导率达到3. 2×10-12S/m,比纯NBR增加了3个数量级,同时拉伸强度提高了18. 6%;当GO-E100在复合材料中的质量分数为6. 8%时,其拉伸强度提高了12%,耐油性稍有改善,复合材料电导率达到5. 6×10-8S/m,比纯的NBR增加了7个数量级,基本满足抗静电要求。
        The reduction and functionalization of graphene oxide( GO) are realized simultaneously by simply refluxing graphene oxide( GO) with diethyltoluene diamine( E100),and GO-E100 with conductivity and surface modification is prepared.GO-E100 exhibits an electrical conductivity of 1 S/m,comparing with 1. 0×10-7 S/m of common GO. Benefiting from the improved compatibility and high conductivity of GO-E100,GO-E100/NBR nanocomposites behaves a 18. 6% improvement in tensile strength with GO-E100 content of 4. 2 wt%.When the content of GO-E100 in nanocomposites reaches 6. 8 wt%,the tensile strength of GO-E100/NBR composites rises by 12%,its oil resistivity is improved a little and the electrical conductivity is 7 orders higher,which meets basically antistatic requirements.
引文
[1]Slonczewski J C,Weiss P R.Band structure of graphite[J].Physical Review,1958,109(2):272-279.
    [2]刘德伟,杜续生,张宏书,等.丁腈橡胶/膨胀石墨导电纳米复合材料的制备和性能[J].精细化工,2005,(7):485-488.
    [3]黄琨,黄渝鸿,郭静,等.三元乙丙橡胶/石墨功能复合材料的制备与性能分析[J].绝缘材料,2008,(2):53-56.
    [4]Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
    [5]许晶玮,庞浩,胡美龙,等.高分子/石墨复合材料的制备与导电性能的研究进展[J].化学通报,2007,(8):577-581.
    [6]李法华.功能性橡胶材料及制品的发展[J].橡胶工业,2001,(2):112-121.
    [7]Tang G Q,Jiang Z G,Li X F,et al.Three dimensional graphene aerogels and their electrically conductive composites[J]. Carbon,2014,77(10):592-599.
    [8]孙业斌,张新民.填充型导电高分子材料的研究进展[J].特种橡胶制品,2009,30(3):73-78.
    [9]Ye X,Zhou Q,Jia C,et al.Producing large-area,foldable graphene paper from graphite oxide suspensions by in-situ chemical reduction process[J].Carbon,2017,114:424-434.
    [10]Mondal S,Khastgir D. Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black&graphene-MWCNT[J]. Composites Part A:Applied Science and Manufacturing,2017,102:154-165.
    [11]Singh V K,Shukla A,Patra,et al.Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite[J].Carbon,2012,50(6):2202-2208.
    [12]Li Y,Wang Q,Wang T,et al.Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites[J] Journal of Materials Science,2012,47(2):730-738.
    [13]Begum H,Ahmed M S,Cho S,et al.Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metalfree oxygen reduction reaction[J].Journal of Power Sources,2017,372:116-124.
    [14]Wang Y,Yang R,Shi Z,et al. Super-elastic graphene ripples for flexible strain sensors[J].ACS Nano,2011,5(5):3645-3650.
    [15]Xu LQ,Yang W J,Neoh K G,et al. Dopamine-induced reduction and functionalization of graphene oxide nanosheets[J].Macromolecules,2010,43(20):8336-8339.
    [16]Liu R,Liang S,Tang X Z,et al.Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels[J]. Journal of Materials Chemistry,2012,22(28):14160-14167.
    [17]Zhang L,Chen G,Hedhili M N,et al.Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced selfassembly method[J].Nanoscale,2012,4(22):7038-7045.
    [18]Ma H L,Zhang H B,Hu Q H,et al.Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites[J]. ACS Applied Materials&Interfaces,2012,4(4):1948-1953.
    [19]Ansari S,Giannelis E P.Functionalized graphene sheet-Poly(vinylidene fluoride)conductive nanocomposites[J]. Journal of Polymer Science Part B Polymer Physics,2009,47(9):888-897.
    [20]Fang M,Wang K,Lu H,et al.Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites[J].Journal of Materials Chemistry,2009,19(38):7098-7105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700