混凝土管端口打磨机器人设计及力学性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Mechanics Performance Analysis of a Concrete Pipe End Grinding Robot
  • 作者:崔国华 ; 刘健 ; 马良 ; 崔康康
  • 英文作者:CUI Guohua;LIU Jian;MA Liang;CUI Kangkang;School of Mechanical and Equipment Engineering, Hebei University of Engineering;School of Materials Engineering, Hebei University of Engineering;
  • 关键词:端口打磨机器人 ; 构型设计 ; 结构设计 ; 力学模型 ; 有限元仿真
  • 英文关键词:pipe end grinding robot;;configuration design;;structure design;;mechanics model;;finite element simulation
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:河北工程大学机械与装备工程学院;河北工程大学材料工程学院;
  • 出版日期:2019-03-28 10:38
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.510
  • 基金:国家自然科学基金资助项目(51775165)
  • 语种:中文;
  • 页:ZGJX201906006
  • 页数:7
  • CN:06
  • ISSN:42-1294/TH
  • 分类号:39-45
摘要
为提高预应力钢筒混凝土管道端口的打磨精度和效率,设计了一种新型的自行走式端口打磨机器人。基于构型演变法对该机器人进行了构型设计及结构设计,建立了其力学模型。以插口端打磨机器人应用于4 m口径管道为实例,求解了机器人运行过程中的极限载荷,并进行了有限元仿真分析,分析结果表明,该机器人在运行过程中,强度、刚度满足现场需求。现场试验验证了该机器人具有较高的打磨效率与工作可靠性。
        In order to improve the accuracy and efficiency of grinding prestress concrete cylinder pipe ends, a novel self-propelled pipe end grinding robot was designed. Configuration and structure of this robot were designed based on configurational evolution method, and the mechanics model of the robot was established. Taking the jack end grinding robot applied to the 4 m diameter pipe as an example, ultimate load of the robot in the operations was obtained, and the finite element simulation analysis was carried out. Analysis results show that the strength and stiffness of the robot meet the requirements of fields in running processes. And the field test proves that the robot has higher grinding efficiency and reliability.
引文
[1] 彭寿海. 超大口径预应力钢筒混凝土管(PCCP)结构分析[D]. 北京:清华大学,2009.PENG Shouhai. Structural Analysis of Large-diameter Prestressed Concrete Cylinder Pipe[D]. Beijing: Tsinghua University, 2009.
    [2] 程翠林,白家瑞,刘烨华. 大口径PCCP生产工艺流程与厂区布置[J].水利水电技术,2009,40(11):68-71. CHENG Cuilin, BAI Jiarui, LIU Yehua. Technology Process and Plant Layout for Production of Large Diameter PCCP[J]. Water Resources and Hydropower Engineering, 2009, 40(11):68-71.
    [3] 李洪志. 大口径预应力钢筒混凝土制管技术研究[D]. 大庆:东北石油大学,2009. LI Hongzhi. A Study on Big Caliber Prestressed Concrete Cylinder Pipe[D]. Daqing: Northeast Petroleum University, 2009.
    [4] 江苏江扬建材机械有限公司. 一种PCCP管打磨装置: 中国, 201410462243.7[P]. 2014-12-24.
    [5] ZIN M R A M, SAHARI K S M, SAAD J M, et al. Development of a Low Cost Small Sized In-pipe Robot[J]. Procedia Engineering, 2012,41: 1469-1475.
    [6] ZHU C. In-pipe Robot for Inspection and Sampling Tasks[J]. Industrial Robot-An International Journal, 2007, 34(1):39-45.
    [7] 李特,马书根,李斌,等. 螺旋驱动管内机器人自适应运动机理与机构设计[J]. 机械工程学报,2016,52(9):9-17. LI Te, MA Shugen, LI Bin, et al. Design and Motion Mechanism of a Screw Drive In-pipe Robot with Adaptability to In-pipe Environment[J]. Journal of Mechanical Engineering, 2016, 52(9):9-17.
    [8] NAYAK A, PRADHAN S K. Design of a New In-pipe Inspection Robot[J]. Procedia Engineering, 2014, 97: 2081-2091.
    [9] MATEOS L A, ZHOU K, VINCZE M. Towards Efficient Pipe Maintenance: DeWaLoP In-pipe Robot Stability Controller[C]//International Conference on Mechatronics and Automation. Chengdu, 2012:1-6.
    [10] 唐德威,李庆凯,姜生元,等. 具有差动运动功能的管道机器人设计与分析[J]. 机械工程学报, 2011,47(13):1-8.TANG Dewei, LI Qingkai, JIANG Shengyuan, et al. Design and Analysis of a Pipeline Robot with the Function of Differential Movement[J]. Journal of Mechanical Engineering, 2011, 47(13):1-8.
    [11] NAGAYA K, YOSHINO T, KATAYAMA M, et al. Wireless Piping Inspection Vehicle Using Magnetic Adsorption Force[J]. IEEE/ASME Transactions on Mechatronics, 2012(6): 472-479.
    [12] 朱伟,汪源,沈惠平,等. 仿腕关节柔顺并联打磨机器人设计与试验[J]. 农业机械学报, 2016,47(2):402-407. ZHU Wei, WANG Yuan, SHEN Huiping, et al. Design and Experiment of Compliant Parallel Humanoid Wrist Joint Polishing Robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2):402-407.
    [13] 孙一兰,柳洪义,王品,等. 导弹弹体内壁打磨机器人及其运动轨迹规划[J]. 中国机械工程, 2009,20(7):838-843. SUN Yilan, LIU Hongyi, WANG Pin, et al. Design of Missile Inner-wall Grinding Robot and Its Trajectory Planning[J]. China Mechanical Engineering, 2009, 20(7): 838-843.
    [14] NAHAVANDI S, UDDIN M J, NASU Y, et al. Automated Robotic Grinding by Low-powered Manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(5): 589-598.
    [15] 于靖军. 机器人机构学的数学基础[M]. 北京:机械工业出版社, 2008.YU Jingjun. Mathematic Foundation of Mechanisms and Robotics[M]. Beijing: China Machine Press, 2008.
    [16] 王东伟,尚书旗,韩坤. 4HJL_2型花生联合收获机摘果机构的设计与试验[J]. 农业工程学报, 2013,29(14):15-25. WANG Dongwei, SHANG Shuqi, HAN Kun. Design and Test of Picking Mechanism in 4HJL-2 Peanut Combines[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14):15-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700