利用增量相位和星光仰角增强XNAV
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhancement of XNAV Utilizing Incremental Phase and Star Elevation
  • 作者:焦荣 ; 甘伟 ; 肖志红 ; 崔占琴
  • 英文作者:JIAO Rong;GAN Wei;XIAO Zhi-hong;CUI Zhan-qin;School of Electronic Engineering,Xi'an Shiyou University;
  • 关键词:X射线脉冲星 ; 自适应差分滤波器(ADDF) ; 到达时 ; 信息融合
  • 英文关键词:X-ray pulsar;;Adaptive divided difference filter(ADDF);;Time of arrival;;Information fusion
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:西安石油大学电子工程学院;
  • 出版日期:2019-06-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(61771371)
  • 语种:中文;
  • 页:YHXB201906007
  • 页数:7
  • CN:06
  • ISSN:11-2053/V
  • 分类号:60-66
摘要
针对X射线脉冲星导航系统(XNAV)中过程噪声统计特性难以准确获取,对其不当假设导致滤波器估计性能不佳的问题,提出基于自适应差分卡尔曼滤波器(ADDF)的多信息融合算法。为了降低导航误差,在传统脉冲星计时观测的基础上,增加恒星星光仰角及两个时刻间的相位增量观测量,共同增强XNAV。首先,分别建立计时观测模型、相位增量模型及星光仰角模型;然后将多信息测量模型集成到卫星轨道动力学方程中,以建立ADDF滤波模型;最后对所提方法进行仿真验证。实验结果表明,在相同的初始状态和初始噪声误差条件下,与传统X射线脉冲星导航算法相比,多信息融合算法能将导航位置估计精度提高70%以上,位置估计误差降低到200 m左右,速度估计精度提高40%以上,且ADDF性能优于无迹卡尔曼滤波器。
        The X-ray pulsar navigation system( XNAV) is a nonlinear system. It is difficult to obtain the statistical characteristics of the process noise accurately. The improper assumption of XNAV leads to poor performance of the filter estimation. A multi-information fusion navigation method based on the adaptive divided difference filter( ADDF) is proposed. In order to reduce the navigation error,based on the traditional pulsar timing observation,the star elevation angle and the incremental phase between the two moments are appended to enhance the XNAV together. First of all,the time observation,incremental phase and star elevation model are established respectively. Then,this measurement model is integrated into the spacecraft orbit dynamics to build the ADDF filter model. Finally,the proposed method is verified by simulation. Under the condition of the same initial state and initial noise error,the experimental results show that the multiinformation fusion algorithm can reduce the estimated value of navigation position error to about 200 m. Compared with the conventional X-ray pulsar navigation algorithm,the accuracy of position estimation and velocity estimation are increased by more than 70% and 40% respectively. Moreover,The performance of ADDF is better than that of the unscented Kalman filter.
引文
[1] Sheikh S I,Pines D J,Ray P S,et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance Control and Dynamics,2006,29(1):49-63.
    [2]郑伟,王奕迪,汤国建,等. X射线脉冲星导航理论和应用[M].北京:科学出版社,2015:8-20.
    [3] Ashby N,Howe D A. Relativity andtiming in X-ray pulsar navigation[C]. International Frequency Control Symposium and Exposition,Piscataway,NJ,USA,July,2006.
    [4] Emadzadeh A A,Speyer J L. Relativenavigation between two spacecraft using X-ray pulsars[J]. IEEE Transactions on Control System Technology. 2011,19(5):1021-1035.
    [5]宋佳凝,徐国栋,李鹏飞.基于相位差测量的脉冲星时间相对导航方法[J].宇航学报,2016,37(11):1304-1311.[Song Jia-ning,Xu Guo-dong,Li Peng-fei. Pulsar based time relative navigation method using phase difference measurement[J]. Journal of Astronautics,2016,37(11):1304-1311.]
    [6] Ma J, Xu J, Cao Z B. A method of autonomous orbit determination for satellite using star sensor[J]. Science in China,2005,48(3):268-281.
    [7] Liu J,Ma J,Tian J W. Pulsar/CNS integrated navigation based on federated UKF[J]. Journal of Systems Engineering and Electronics,2010,21(4):675-681
    [8] Emadzadeh A A,Speyer J L. On modeling and pulse phase estimation of X-ray pulsars[J]. IEEE Transactions on Signal Processing,2010,58(9):4484-4495.
    [9]康志伟,徐星满,刘劲,等.基于双测量模型的多普勒测速及其组合导航[J].宇航学报,2017,38(9):964-970.[Kang Zhi-wei, Xu Xing-man, Liu Jin, et al. Doppler velocity measurement based on double measurement model and its integrated navigation[J]. Journal of Astronautics,2017,38(9):964-970.]
    [10]熊凯,魏春玲.基于光学敏感器增强脉冲星导航系统性能[J].导航定位学报,2016,4(1):38-43.[Xiong Kai,Wei Chun-ling. Performance enhancement of X-ray pulsar navigation based on optical sensor[J]. Journal of navigation and positioning,2016,4(1):38-43.]
    [11] Jiao R,Xu L P,Zhang H,et al. Orbit determination using incremental phase and TDOA of X-ray pulsar[J]. Frontiers of Information Technology&Electronic Engineering,2016,17(6):543-552.
    [12] Jiao R,Xu L P,Zhang H,et al. Augmentation method of XPNAV in Mars orbit based on Phobos and Deimos observations[J]. Advances in Space Research,2016,58(9):1864-1878.
    [13] Taylor J H. Pulsar timing and relativistic gravity[J].Philosophical transactions of the royal society of London:Series A#Physical and Engineering Sciences,1992,341(1660):117–134.
    [14]宁晓琳,房建成.航天器自主天文导航系统的可观测性及可观测度分析[J].北京航空航天大学学报,2005,31(6):673-677.[Ning Xiao-lin, Fang Jian-cheng. Analysis of observability and the degree of observability in autonomous celestial navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2005,31(6):673-677.]
    [15]熊凯,魏春岭,刘良栋.基于脉冲星的卫星星座自主导航技术研究[J].宇航学报,2008,29(2):545-549.[Xiong Kai,Wei Chun-ling,Liu Liang-dong. Research on the autonomous navigation of satellite constellation using pulsars[J]. Journal of astronautics,2008,29(2):545-549.]
    [16] Aritro D,Smita S,Ghoshal T K. Adaptive divided difference filter for nonlinear systems with unknown noise[C]. International Conference on Control, Instrumentation, Energy&Communication(CIEC),Calcutta,India,November,2014.
    [17] Subrahmanya N,Shin Y C. Adaptive divided difference filtering for simultaneous state and parameter estimation[J]. Automatica,2009,45(7):1686-1693.
    [18] Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland:University of Maryland,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700