六信道光子晶体环形腔波分解复用器的设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A six-channel wavelength demultiplexer based on photonic crystal ring resonators
  • 作者:王娅欣 ; 张克非 ; 邵龙 ; 蒋涛
  • 英文作者:WANG Yaxin;ZHANG Kefei;SHAO Long;JIANG Tao;School of Science,Southwest University of Science and Technology;School of Computer Science and Technology,Southwest University of Science and Technology;School of Communication & Information Engineering,University of Electronic Science and Technology;College of Engineering and Applied Sciences,Nanjing University;
  • 关键词:光子晶体 ; 时域有限差分法 ; 谐振腔 ; 波分解复用器
  • 英文关键词:photonic crystal;;finite difference time domain method;;resonantor;;wavelength demultiplexer
  • 中文刊名:JGZZ
  • 英文刊名:Laser Journal
  • 机构:西南科技大学理学院;西南科技大学计算机科学与技术学院;电子科技大学通信与信息工程学院;南京大学现代工程与应用科学学院;
  • 出版日期:2019-06-25
  • 出版单位:激光杂志
  • 年:2019
  • 期:v.40;No.261
  • 基金:国家级大学生创新创业训练计划项目(No.201810619043);; 四川省科技计划项目(No.2018GZ0212);; 四川省苗子工程培育项目(No.2018060)资助的课题
  • 语种:中文;
  • 页:JGZZ201906010
  • 页数:5
  • CN:06
  • ISSN:50-1085/TN
  • 分类号:49-53
摘要
针对下一代超高速光通信系统对器件微型化和集成化的迫切需求,设计了一种基于光子晶体环形腔的六信道波分解复用器。利用平面波展开法和时域有限差分法分析环形腔和点微腔等缺陷结构的模式特性,根据耦合模理论确定波导与谐振腔之间的最佳耦合条件,通过改变环形腔内介质柱的折射率和半径实现波长的选择性,通过控制点微腔的中心介质柱半径实现目标频率光波的高透射率输出。仿真结果证明该器件适用于E、S、C、L、U波段的光波传输,尤其对C波段内多个波长可实现解复用功能,Q值高达103,插入损耗低至0. 087 7 d B,谱线宽度小于2 nm,窄带特性良好,信道间相互串扰小且动态范围为[-31. 6,-14]dB,传输透射率均高于90%,而且器件尺寸仅为22. 6μm×22. 6μm,适用于光器件集成。
        A new wavelength demultiplexer is designed with six-channel coupled with specific ring resonator and micro-cavity based on two-dimensional photonic crystal for the next-generation ultra-high-speed optical communication system. The fundamental properties of the two-dimensional square lattice photonic crystal structure and the mode characteristics of the defect structure are analyzed using the plane wave expansion method and the finite difference time domain method. This work introduces the line defects as an optical waveguide,and combines the ring resonator and the micro-cavity to achieve the function of filtering and frequency selection. According to the coupled mode theory,the coupling mechanism between the waveguide and the resonator is studied to determine the optimal coupling conditions.By changing the refractive index and radius of the dielectric rods in the ring resonator,a selective wavelength design is realized. By controlling the radius of the dielectric rod in the micro-cavity,the target frequency light can be achieved with high transmission efficiency. The results show that the demultiplexer is applied to the E-band,S-band,C-band,L-band and U-band,especially can be used for demultiplexing wavelengths in the C-band,and the Q value is 103,while the insertion loss is only 0. 087 7 d B. The spectral line width is less than 2 nm,and the dynamic range of the crosstalk between channels is from-31. 6 dB to-14 dB. Additionally,the transmission efficiency is both above 90%,and the size of the device is only 22. 6 μm×22. 6 μm,which can be adapted to the miniaturization and integration of the optical device.
引文
[1] STANTON E J,VOLET N,BOWERS J E.Silicon arrayed waveguide gratings at 2. 0-μm wavelength characterized with an on-chip resonator[J]. Optics Letters,2018,43(5):1135.
    [2] KOKUBUN Y. Waveguide filters and related technologiesissues and solutions for practical use in transmission systems-[J].Journal of Lightwave Technology,2018,PP(99):1-1.
    [3] YABLONOVITCH E.Inhibited spontaneous emission in solid-state physics and electronics.[J].Physical Review Letters,1987,58(20):2059.
    [4] JOHN S.Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters,1987,58(23):2486-2489.
    [5] SAKODA K. Optical Properties of Photonic Crystals[M].Springer Berlin Heidelberg,2005.
    [6] MEKIS A,CHEN J C,KURLAND I I,et al.High Transmission through Sharp Bends in Photonic Crystal Waveguides.[J].Physical Review Letters,1996,77(18):3787-3790.
    [7]杜晓宇,郑婉华,任刚,等.二维光子晶体耦合腔阵列的慢波效应研究[J].物理学报,2008,57(1):571-575.
    [8] FAN S,VILLENEUVE P R,JOANNOPOULOS J D,et al.Channel drop tunneling through localized states[J]. Phys.rev.lett,1998,80(5):960-963.
    [9] MIN B K,KIM J E,PARK H Y. Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs[J]. Optics Communications,2004,237(1):59-63.
    [10] QIU M,ZHANG Z. Compact in-plane channel drop filter design using a single cavity with two degenerate modes in2D photonic crystal slabs[J]. Optics Express,2005,13(7):2596.
    [11] SHARKAWY A,SHI S,PRATHER D W. Multichannel wavelength division multiplexing with photonic crystals[J].Applied Optics,2001,40(14):2247.
    [12] MAI T T,HSIAO F L,LEE C,et al.Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors[J].Sensors&Actuators A Physical,2011,165(1):16-25.
    [13] ROSTAMI A,BANAEI H A,NAZARI F,et al. An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure[J]. Optik-International Journal for Light and Electron Optics,2011,122(16):1481-1485.
    [14] ROSTAMI A,NAZARI F,BANAEI H A,et al. A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure[J].Photonics and NanostructuresFundamentals and Applications,2010,8(1):14-22.
    [15] MONIFI F,GHAFFARI A,DJAVID M,et al.Three output port channel-drop filter basedon photonic crystals.[J]. Applied Optics,2009,48(4):804.
    [16] LI J S,HAN L,LE Z.Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal[J].Optics Communications,2015,350:248-251.
    [17] FALLAHIV,SEIFOURI M,OLYAEE S,et al.Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators[J].Optical Review,2017(10):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700