农田沟道土壤中锰氨氧化(Mn-ANAMMOX)过程的探究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Insight into the Process of Mn-ANAMMOX in Soils of Agricultural Drainage Ditches
  • 作者:陈湜 ; 李正魁 ; 覃云斌 ; 丁帮璟 ; 陈志浩
  • 英文作者:CHEN Shi;LI Zheng-kui;QIN Yun-bin;DING Bang-jing;CHEN Zhi-hao;State Key Laboratory of Pollution Control and Resources Reuse,School of the Environment,Nanjing University;
  • 关键词:锰氨氧化 ; 锰还原菌 ; 同位素标记 ; 高通量测序 ; 氮去除
  • 英文关键词:Mn-ANAMMOX;;Mn(Ⅳ)-reducing bacteria;;isotope labeling;;high-throughput sequencing;;nitrogen removal
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:南京大学环境学院污染控制与资源化研究国家重点实验室;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家水体污染控制与治理重大专项(2017ZX07204-004)
  • 语种:中文;
  • 页:HJKZ201906053
  • 页数:6
  • CN:06
  • ISSN:11-1895/X
  • 分类号:458-463
摘要
二氧化锰介导的厌氧氨氧化(锰氨氧化)是最近发现的一种新型微生物脱氮途径,然而很少有研究报道农田沟道中的锰氨氧化过程和反应过程中主要微生物群落锰还原菌.本研究经过340 d锰还原菌富集培养实验,采用同位素示踪技术和高通量测序技术,证实了锰氨氧化在农田沟道土壤中的存在.结果表明,在锰氨氧化过程中可以观察到氨氮的氧化和MnO_2的还原,以及NO_2~-、NO_3~-、~(30)N_2和Mn~(2+)的产生,锰氨氧化平均速率为2. 88 mg·(kg·d)~(-1),氨氮平均去除率为20%,总氮去除率平均可达15%.另外,高通量测序结果表明,经过340 d富集培养实验,在门水平上锰还原菌丰度从原来的27%增加到了70%,其主要的锰还原菌为不动杆菌(Acinetobacter)和地发菌属(Geothrix),相对丰度分别为26. 63%和4. 07%.实验结果证实了农田沟道中存在二氧化锰介导的厌氧氨氧化过程,可以认为锰氨氧化是微生物脱氮过程的一条重要路径.
        Anaerobic ammonium oxidation mediated by MnO_2(termed Mn-ANAMMOX) is a newly discovered microbial nitrogen removal pathway. However,few studies have reported on the Mn-ANAMMOX process and related microbial communities in agricultural drainage ditches. In this study,Mn(Ⅳ)-reducing bacteria(MnBR) enrichment cultivation was carried out for 340 days and an isotope tracing technique and high-throughput sequencing technology were used to provide convincing evidence of the occurrence of MnANAMMOX. The results showed that simultaneous NH_4~+ oxidation and MnO_2 reduction occurred during the reaction,and the production of NO_2~-,NO_3~-,~(30)N_2,and Mn~(2+) was detected. Additionally,the average Mn-ANAMMOX rate,ammonium removal rate,and total nitrogen removal rate were 2. 88 mg·(kg·d)~(-1),20%,and 15%,respectively. Moreover,high-throughput sequencing results showed that after 340 d in the enrichment cultivation experiments,the abundance of MnBR increased from 27% to 70% at the phylum level,and the major genera of MnBR were determined as Acinetobacter and Geothrix,with relative abundances of 26. 63% and 4. 07%,respectively. Overall,the occurrence of Mn-ANAMMOX was directly proven during the MnBR enrichment cultivation experiments,and it might play an essential role in the pathway of microbial nitrogen removal.
引文
[1] Rahman M M,Shan J,Yang P P,et al. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes(ARGs),anammox and denitrification rates in paddy soils[J]. Environmental Pollution,2018,240:368-377.
    [2] Yang X R,Li H,Nie S A,et al. Potential contribution of anammox to nitrogen loss from paddy soils in southern China[J].Applied and Environmental Microbiology,2015,81(3):938-947.
    [3] Zhu G B,Wang S Y,Wang Y,et al. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. The ISME Journal,2011,5(12):1905-1912.
    [4] Uusheimo S,Tulonen T,Aalto S L,et al. Mitigating agricultural nitrogen load with constructed ponds in northern latitudes:A field study on sedimental denitrification rates[J]. Agriculture,Ecosystems&Environment,2018,261:71-79.
    [5] Yang W H,Weber K A,Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience,2012,5(8):538-541.
    [6]丁帮璟,李正魁,朱鸿杰,等.河岸带表层土壤的铁氨氧化(Feammox)脱氮机制的探究[J].环境科学,2018,39(4):1833-1839.Ding B J,Li Z K,Zhu H J,et al. Insight into the mechanism of Feammox in the surface soils of a riparian zone[J].Environmental Science,2018,39(4):1833-1839.
    [7]钟小娟,王亚军,唐家桓,等.铁氨氧化:新型的厌氧氨氧化过程及其生态意义[J].福建农林大学学报(自然科学版),2018,47(1):1-7.Zhong X J,Wang Y J,Tang J H,et al. Feammox:a novel anammox process and ecological significance[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition),2018,47(1):1-7.
    [8] LutherⅢG W,Sundby B,Lewis B L,et al. Interactions of manganese with the nitrogen cycle:Alternative pathways to dinitrogen[J]. Geochimica et Cosmochimica Acta,1997,61(19):4043-4052.
    [9] Hulth S,Aller R C,Gilbert F. Coupled anoxic nitrification/manganese reduction in marine sediments[J]. Geochimica et Cosmochimica Acta,1999,63(1):49-66.
    [10] Bartlett R,Mortimer R J G,Morris K M. The biogeochemistry of a manganese-rich Scottish sea loch:Implications for the study of anoxic nitrification[J]. Continental Shelf Research,2007,27(10-11):1501-1509.
    [11] Swathi D,Sabumon P C,Maliyekkal S M. Microbial mediated anoxic nitrification-denitrification in the presence of nanoscale oxides of manganese[J]. International Biodeterioration&Biodegradation,2017,119:499-510.
    [12] Javanaud C,Michotey V,Guasco S,et al. Anaerobic ammonium oxidation mediated by Mn-oxides:from sediment to strain level[J]. Research in Microbiology,2011,162(9):848-857.
    [13] Thamdrup B,Dalsgaard T. The fate of ammonium in anoxic manganese oxide-rich marine sediment[J]. Geochimica et Cosmochimica Acta,2000,64(24):4157-4164.
    [14] Bartlett R,Mortimer R J G,Morris K. Anoxic nitrification:Evidence from Humber Estuary sediments(UK)[J]. Chemical Geology,2008,250(1-4):29-39.
    [15] Lin H, Taillefert M. Key geochemical factors regulating Mn(Ⅳ)-catalyzed anaerobic nitrification in coastal marine sediments[J]. Geochimica et Cosmochimica Acta,2014,133:17-33.
    [16] Mogollón J M,Mewes K,Kasten S. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbonstarved marine sediments:Examples from the Clarion-Clipperton fracture zone[J]. Geophysical Research Letters,2016,43(13):7114-7123.
    [17] Lovley D R,Holmes D E,Nevin K P. Dissimilatory Fe(Ⅲ)and Mn(Ⅳ)reduction[J]. Advances in Microbial Physiology,2004,49:219-286.
    [18] Thamdrup B,Rosselló-Mora R,Amann R. Microbial manganese and sulfate reduction in Black Sea shelf sediments[J]. Applied and Environmental Microbiology,2000,66(7):2888-2897.
    [19] Li Z K,PU P M,Hu W P,et al. Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria[J]. Nuclear Science and Techniques,2002,13(2):115-118.
    [20] Zhou G W,Yang X R,Li H,et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to Iron(Ⅲ)reduction[J]. Environmental Science&Technology,2016,50(17):9298-9307.
    [21] Lovley D R,Phillips E J P. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology,1988,54(6):1472-1480.
    [22]刘丹丹,李正魁,叶忠香,等.伊乐藻和氮循环菌技术对太湖氮素吸收和反硝化的影响[J].环境科学,2014,35(10):3764-3768.Liu D D, Li Z K, Ye Z X, et al. Nitrogen uptake and denitrification study on the joint treatment of aquatic vegetation and immobilized nitrogen cycling bacteria in Taihu Lake[J].Environmental Science,2014,35(10):3764-3768.
    [23] Li X, Huang Y, Liu H W, et al. Simultaneous Fe(Ⅲ)reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences,2018,64:42-50.
    [24]刘进超,王欧美,李佳佳,等.生物地球化学锰循环中的微生物胞外电子传递机制[J].微生物学报,2018,58(4):546-559.Liu J C,Wang O M,Li J J,et al. Mechanisms of extracellular electron transfer in the biogeochemical manganese cycle[J].Acta Microbiologica Sinica,2018,58(4):546-559.
    [25] Tebo B M,Bargar J R,Clement B G,et al. BIOGENIC MANGANESE OXIDES:Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences,2004,32:287-328.
    [26] Simanova A A,Pe?a J. Time-resolved investigation of cobalt oxidation by Mn(Ⅲ)-richδ-MnO2using quick X-ray absorption spectroscopy[J]. Environmental Science&Technology,2015,49(18):10867-10876.
    [27] Hou J, Zhang F, Wang P F, et al. Enhanced anaerobic biological treatment of chlorpyrifos in farmland drainage with zero valent iron[J]. Chemical Engineering Journal,2018,336:352-360.
    [28] Davelaar D. Ecological significance of bacterial polyphosphate metabolism in sediments[J]. Hydrobiologia,1993,253(1-3):179-192.
    [29] Du L,Trinh X,Chen Q R,et al. Enhancement of microbial nitrogen removal pathway by vegetation in Integrated VerticalFlow Constructed Wetlands(IVCWs)for treating reclaimed water[J]. Bioresource Technology,2018,249:644-651.
    [30] Zhang S H,Huang Z J,Lu S J,et al. Nutrients removal and bacterial community structure for low C/N municipal wastewater using a modified anaerobic/anoxic/oxic(m A2/O)process in North China[J]. Bioresource Technology,2017,243:975-985.
    [31] Liu H,Lu Q,Wang Q,et al. Isolation of a bacterial strain,Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal[J]. Bioresource Technology,2017,235:59-69.
    [32] Coates J D,Ellis D J,Gaw C V,et al. Geothrix fermentans gen.nov.,sp nov., a novel Fe(Ⅲ)-reducing bacterium from a hydrocarbon-contaminated aquifer[J]. International Journal of Systematic Bacteriology,1999,49(4):1615-1622.
    [33]饶丹丹,孙波,乔俊莲,等.三价锰的性质、产生及环境意义[J].化学进展,2017,29(9):1142-1153.Rao D D,Sun B,Qiao J L,et al. The properties,generation and environmental significance of Mn(Ⅲ)[J]. Progress in Chemistry,2017,29(9):1142-1153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700