基于多普勒非对称空间外差光谱技术的多普勒测速仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Doppler velocity measurement based on Doppler asymmetric space heterodyne spectroscopy
  • 作者:况银丽 ; 方亮 ; 彭翔 ; 程欣 ; 张辉 ; 刘恩海
  • 英文作者:Kuang Yin-Li;Fang Liang;Peng Xiang;Cheng Xin;Zhang Hui;Liu En-Hai;Institute of Optics and Electronics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:多普勒非对称空间外差光谱 ; 多普勒测速 ; 频率跟踪算法 ; 最优单臂偏置
  • 英文关键词:Doppler asymmetric spatial heterodyne spectroscopy;;Doppler velocity measurement;;frequency-tracking algorithm;;optimum path difference offset
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院光电技术研究所;中国科学院大学;
  • 出版日期:2018-07-03 11:30
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家重点基础研究发展计划(批准号:2014CB744204);; 国家自然科学基金(批准号:61501429)资助的课题~~
  • 语种:中文;
  • 页:WLXB201814012
  • 页数:8
  • CN:14
  • ISSN:11-1958/O4
  • 分类号:111-118
摘要
阐述了多普勒非对称空间外差光谱仪用于被动式多普勒测速的基本原理,通过综合考虑干涉条纹对比度和仪器测速灵敏度等关键因素,建立了效率函数,分别针对高斯线型和洛伦兹线型发射谱线,从理论上推导了最优单臂偏置量的选择依据,并以高斯线型目标谱线为例进行了仿真验证.同时,提出了一种基于部分干涉条纹反演多普勒速度的数据处理方法,简化了多谱线目标源的数据处理过程.结合自适应频率跟踪算法对单谱线目标源和多谱线目标源进行了仿真比较,仿真结果表明,在不考虑噪声的情况下,该方法针对多谱线目标源的多普勒测速最大绝对误差在0.004 m/s以内,与针对单谱线目标源的处理精度相当,可以满足实际应用的精度要求.
        Doppler asymmetric spatial heterodyne spectroscopy(DASH) technique with the advantages of high spectral resolution and high phase sensitivity can be considered as a combination of the spatial heterodyne spectroscopy(SHS)technique and the Michelson interferometer technique, which is very suitable for high-precision passive measurement of Doppler velocity. Since a larger optical path difference offset in one of the spectrometer arms corresponds to a higher phase shift sensitivity while suffering a lower contrast of the interferogram, there is an optimum path difference offset for measuring the phase shift and thus the Doppler shift is most sensitive. By comprehensively considering the trade-off between the contrast and the phase shift sensitivity of the interferogram, in this paper we carry out theoretical analysis on the optimum path difference offset. Based on the efficiency function which is defined as the product of the optical path difference and the contrast of the interferogram, the mathematical expressions of the optimum path difference offset for the Gaussian and Lorentz type emission spectral lines are theoretically deduced, respectively. In order to verify these two mathematical expressions, a simulation analysis about the phase shifts of the interference fringes for a single Gaussian type emission spectral line is carried out. The simulation result is consistent with the theoretical value calculated by the deduced mathematical expression. In addition, concerning the complexity of the traditional data processing method for resolving the Doppler velocities of multiple spectral lines, a simplified data processing method based on partial interference fringes is proposed. In general, a single spectral line should be distinguished and isolated from multiple spectral lines in the traditional data processing method. If the distribution of the spectral lines in the passband is too dense, a DASH spectrometer with high enough spectral resolution will be needed. The proposed processing method,retrieving the Doppler velocity from multiple spectral lines without isolating a single line in frequency domain, can not only effectively reduce the calculation of data processing, but also lower the requirement for the spectral resolution of the DASH spectrometer. Combining it with the adaptive frequency-tracing algorithm, the simulation calculations of the Doppler velocity measurement process of the single and multiple spectral lines are conducted. The results show that without taking the noise into account, the maximum resolving errors derived from the proposed data processing method for single and multiple spectral lines are similar, both within 0.005 m/s. It indicates that the proposed data processing method can fully meet the accuracy requirement of practical application and shows the prospect of wide applications in the field of passive Doppler velocity measurement.
引文
[1]Jiang M D,Xiao D,Zhu Y T 2012 Prog.Astron.30246(in Chinese)[姜明达,肖东,朱永田2012天文学进展30 246]
    [2]Pepe F,Mayor M,Delabre B,Kohler D,Lacroix D,Queloz D,Udry S,Benz W,Bertaux J L,Sivan J P 2000Proceedings of the Astronomical Telescopes and Instrumentation Munich,Germany,August 16,2000 p582
    [3]Rupprecht G,Pepe F,Mayor M,et al.2004 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Glasgow,United Kingdom,September 30,2004p148
    [4]Zhao F,Wang H J,Zhao G,Wang L,Liu Y J 2015 Astron.Res.Technol.12 117(in Chinese)[赵斐,王汇娟,赵刚,王靓,刘玉娟2015天文研究与技术12 117]
    [5]Perruchot S,Kohler D,Bouchy F,et al.2008 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Marseille,France,July 9,2008 p70140J
    [6]Vogt S S,Allen S L,Bigelow B C,et al.1994 Proceedings of the 1994 Symposium on Astronomical Telescopes and Instrumentation for the 21st Century Kailua,United States,June 1,1994 p362
    [7]Mégevand D,Zerbi F M,Cabral A,et al.2012 Proceedings of the SPIE Astronomical Telescopes and Instrumentation Amsterdam,Netherlands,September 24,2012 p84461R
    [8]Wang Q M,Zhang Y M 2006 J.Optoelectronics·Laser17 179(in Chinese)[王青梅,张以谟2006光电子·激光17 179]
    [9]Chang L 2007 M.S.Thesis(Kunming:Yunnan Observatories,Chinese Academy of Sciences)(in Chinese)[常亮2007硕士学位论文(昆明:中国科学院云南天文台)]
    [10]Shepherd G G,Thuillier G,Gault W A,Solheim B H,Hersom C,Alunni J M,Brun J F,Brune S,Charlot P,Cogger L L 1993 J.Geophys.Res.98 10725
    [11]Gault W A,Brown S,Moise A,Liang D,Sellar G,Shepherd G G,Wimperis J 1996 Appl.Opt.35 2913
    [12]Gao H,Tang Y,Hua D,Liu H,Cao X,Duan X,Jia Q,Qu O,Wu Y 2013 Appl.Opt.52 8650
    [13]Harlander J,Reynolds R J,Roesler F L 1992 Astophys.J.396 730
    [14]Harlander J M,Roesler F L,Englert C R,Cardon J G,Conway R R,Brown C M,Wimperis J 2003 Appl.Opt.42 2829
    [15]Englert C R,Harlander J M,Cardon J G,Roesler F L2004 Appl.Opt.43 6680
    [16]Englert C R,Harlander J M 2006 Appl.Opt.45 4583
    [17]Englert C R,Stevens M H,Siskind D E,Babcock D D,Harlander J M 2006 Proceedings of the SPIE Optics and Photon.San Diego,United States,September1,2006 p63030T
    [18]Englert C R,Babcock D D,Harlander J M 2007 Appl.Opt.46 7297
    [19]Peng X,Zhang W 2017 Acta Photon.Sin.46 0311003(in Chinese)[彭翔,张嵬2017光子学报46 0311003]
    [20]Mosser B,Maillard J P,Bouchy F 2003 PASP 115 990
    [21]Wang L 2007 Ph.D.Dissertation(Xi’an:Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences)(in Chinese)[汪丽2007博士学位论文(西安:中国科学院西安光学精密机械研究所)]
    [22]Xun J P 2008 Ph.D.Dissertation(Wuhan:Huazhong University of Science and Technology)(in Chinese)[郧建平2008博士学位论文(武汉:华中科技大学)]
    [23]He J,Zhang C M,Tang Y H,Zhao B C 2005 Acta Opt.Sin.25 577(in Chinese)[贺健,张淳民,唐远河,赵葆常2005光学学报25 577]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700