甲醇合成反应过程的模拟与优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and optimization of methanol synthesis process
  • 作者:张秋利 ; 罗敏 ; 李凤英
  • 英文作者:ZHANG Qiu-li;LUO Min;LI Feng-ying;School of Metallurgical Engineering, Xi'an University of Architecture and Technology;Research Center of Metallurgical Engineering and Technology of Shaanxi Province;
  • 关键词:甲醇合成 ; 动力学模拟 ; 优化
  • 英文关键词:methanol synthesis;;dynamic simulation;;optimization
  • 中文刊名:TRQH
  • 英文刊名:Natural Gas Chemical Industry
  • 机构:西安建筑科技大学冶金工程学院;陕西省冶金工程技术研究中心;
  • 出版日期:2019-02-25
  • 出版单位:天然气化工(C1化学与化工)
  • 年:2019
  • 期:v.44;No.244
  • 语种:中文;
  • 页:TRQH201901022
  • 页数:6
  • CN:01
  • ISSN:51-1336/TQ
  • 分类号:99-104
摘要
以焦炉煤气的转化气作为原料,选用C302铜基催化剂,在原料气体流量为3000m~3/h的条件下,采用L-H-H-W动力学模型了模拟低压法合成甲醇的工艺过程,并采用灵敏度分析法研究温度、压力、分流比以及催化剂填充密度对甲醇合成反应过程的影响,得出反应器内不同位置的温度分布及物质组成,结果与文献相符。优化得出较优工艺操作条件为:反应温度为250℃、分流比为0.68、催化剂填充密度为1400kg/m~3,此条件下,甲醇合成反应效率最好。
        Taking the reforming gas of coke oven gas as feed gas and C302 as synthesis catalyst, under the feed gas flow rate of 3000 m~3/h, the low pressure methanol synthesis process was simulated by L-H-H-W kinetic model, and the sensitivity analysis method was used to study the effect of temperature, pressure, split ratio and catalyst packing density on the synthesis process. The temperature distribution and gas composition at different positions in the reactor were obtained, and the results were consistent with the literature. The optimized process conditions were as follows: reaction temperature of 250℃, the split ratio of 0.68, and catalyst packing density of 1400 kg/m~3. Under above conditions, the methanol synthesis efficiency was the best.
引文
[1]张丽平.甲醇生产技术新进展[J].天然气化工-C1化学与化工, 2013, 38(1):89-94.
    [2]马宏方,张海涛,应卫勇,等.焦炉气与煤气生产甲醇的研究[J].天然气化工-C1化学与化工, 2010, 35(1):13-16.
    [3]Khozema A A, Ahmad Z A, Abdul R M. Recent development in catalytic technologies for methanol synthesis from renewable sources:A critical review[J].Renew Sust Energy Rev, 2015, 44:508-518.
    [4]Steinhauer B, Kasireddy M R, Radni J, et al. Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming[J]. Appl Catal A, 2009, 366:333-341.
    [5]Graff G H, Stamhuis E J, Beenackers A A C M. Kinetics of low-pressure methanol synthesis[J]. Chem Eng Sci,1988, 43:3185-3195.
    [6]李建伟,李成岳,蒋小川,等. C302铜基催化剂上甲醇合成的动力学研究(Ⅰ动力学模型)[J].催化学报, 2000,21(6):551-555.
    [7]蒋小川,李建伟,李成岳. C302铜基催化剂上甲醇合成动力学进行研究(Ⅱ):动力学模型的工业检验)[J].催化学报, 2000, 21(6):556-560.
    [8]陈鹏,唐黎华,张琪,等. C306催化剂上甲醇合成宏观动力学研究[J].高校化学工程学报, 2010,(4):602-607.
    [9]马宏方,刘殿华,应卫勇,等. 8MPa下C307催化剂上甲醇合成反应的本征动力学[J].华东理工大学学报:自然科学版, 2008,(1):6-9.
    [10]Giulia B, Flavia M. Efficient methanol synthesis:Perspective, technologies and optimization strategies[J].Prog Energ Combust, 2016, 56:71-105.
    [11]Bermúdez J M, Arenillas A, Menendez J A. Equilibrium prediction of CO2reforming of coke oven gas:Suitability for methanol production[J]. Chem Eng Sci, 2012, 82:95-103.
    [12]Xiang D, Xiang J J, Sun Z, et al. The integrated cokeoven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization[J].Energy, 2017, 140:78-91.
    [13]Li J L, Ma X X, Liu H, et al. Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes[J]. J Clean Prod, 2018, 185:299-308.
    [14]李建锁,王宪贵,王晓琴.焦炉煤气制甲醇技术[M].北京:化学工业出版社, 2009.
    [15]阳翠萍.甲醇合成流程的仿真研究[D].浙江:浙江大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700