介孔纳米二氧化硅作为药物载体在癌症治疗中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Mesoporous Nano-Silica as Drug Carrier in Cancer Therapy
  • 作者:蔡幸美 ; 商雨婷 ; 王澈
  • 英文作者:CAI Xing-Mei;SHANG Yu-Ting;WANG Che;College of Chemistry and Chemical Engineering, Liaoning Normal University;Key Laboratory of Biotechnology and Molecular Drug Development;
  • 关键词:介孔纳米二氧化硅 ; 表面修饰 ; 癌症 ; 靶向性 ; 药物载体
  • 英文关键词:mesosorous silica nanoparticles(MSNs);;surface modification;;cancer;;targeting;;drug carrier
  • 中文刊名:SWHZ
  • 英文刊名:Chinese Journal of Biochemistry and Molecular Biology
  • 机构:辽宁师范大学化学化工学院药物化学系;辽宁省生物技术与分子药物研发重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:中国生物化学与分子生物学报
  • 年:2019
  • 期:v.35
  • 基金:2017年国家级和辽宁省大学生创新训练项目(No.201710165000031);; 辽宁省教育厅重点室平台项目(No.L201683653)资助~~
  • 语种:中文;
  • 页:SWHZ201903006
  • 页数:6
  • CN:03
  • ISSN:11-3870/Q
  • 分类号:51-56
摘要
介孔纳米二氧化硅作为抗肿瘤药物载体,在癌症治疗上的应用越来越受到关注。介孔纳米二氧化硅不仅可实现药物的有效递送,而且可显著提高药物的生物利用度。功能化介孔纳米二氧化硅还能提高药物对肿瘤细胞的靶向性,实现药物的特异性按需释放。该新型纳米载体在癌症治疗中具有非常广阔的应用前景。本文对介孔纳米二氧化硅作为药物载体在多种癌症治疗中的应用,以及不同表面修饰物对药物载体递送的影响和优势加以综述,并对功能化介孔纳米二氧化硅载体对提高药物抗癌活性和靶向性的积极作用提出了展望。
        As a carrier of anti-tumor drugs, mesoporous nano-silica has attracted more and more attention in treating cancer. Mesoporous nano-silica can not only effectively deliver drugs, but also significantly improve the bioavailability of the drugs. Functionalized mesoporous nano-silica can also improve the targeting of drugs to tumor cells, leading to a drug-specific on-demand release. The new nanocarrier has a very broad application prospect in cancer therapy. In this paper, we review the application of mesoporous nano-silica as a drug carrier in the treatment of various cancers, and the effects and advantages of different surface modifiers on drug delivery. We also further envision the positive impacts of functionalized mesoporous nano-silica carriers on improving the anticancer activity and targeting of drugs.
引文
[1] Sarkar A,Ghosh S,Chowdhury S,et al. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells [J]. Biochim Biophys Acta, 2016, 1860(10): 2065-2075
    [2] Wang C, Dong S, Zhang L, et al. Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells[J]. Sci Rep, 2017, 7(1): 8293
    [3] Juère E, Florek J, Bouchoucha M,et al. In vitro dissolution, cellular membrane permeability and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles [J]. Mol Pharm, 2017, 14 (12): 4431-4441
    [4] Florek J, Caillard R, Kleitz F. Evaluation of mesoporous silica nanoparticles for oral drug delivery-current status and perspective of MSNs drug carriers[J]. Nanoscale, 2017, 9(40): 15252-15277
    [5] Deveci P, Taner B, Albayati SHM. Mesoporous silica and chitosan based pH-sensitive smart nanoparticles for tumor targeted drug delivery[J]. J Inclusion Phenomena Macrocyclic Chem, 2017, 89(1-2): 15-27
    [6] M GA, C SK, Henry LJK, et al. Atrial natriuretic peptide-conjugated chitosan-hydrazone- mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone [J]. Carbohydr Polym, 2017, 157: 1677-1686
    [7] Arami S,Mahdavi M,Rashidi MR,et al. Apoptosis induction activity and molecular docking studies of survivin siRNA carried by Fe3O4-PEG-LAC-chitosan-PEI nanoparticles in MCF-7 human breast cancer cells[J]. J Pharm Biomed Anal, 2017, 142: 145-154
    [8] Wang Y,Zhangn Z,Xu S,et al. pH, redox and photothermal tri-responsive DNA/ polyethylenimine conjugated gold nanorod as nanocarrier for specific intracellular co-release of doxorubicin and chemosensitizer pyronaridine to combat multidrug resistant cancer[J]. Nanomed-Nanotechnol, 2017, 13(5): 1785-1795
    [9] Haggag YA,Matchett KB,Dakir el-H,et al. Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB -231 breast cancer cells[J]. Int J Pharm, 2017, 521(1-2): 40-53
    [10] Yang D,Feng L,Dougherty CA,et al. In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide[J]. Biomaterials, 2016, 104: 361-371
    [11] Ludwig JM,Gai Y,Sun L,et al. SW43-DOX ± loading onto drug-eluting bead, a potential new targeted drug delivery platform for systemic and locoregional cancer treatment-An in vitro evaluation[J]. Mol Oncol, 2016, 10(7): 1133-1145
    [12] Wang L,Sun Q,Wang X,et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance[J]. J Am Chem Soc, 2015, 137(5): 1947-1955
    [13] Cheng W,Nie J,Xu L,et al. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy[J]. ACS Appl Mater Interfaces, 2017, 9(22): 18462-18473
    [14] Roggers R,Kanvinde S,Boonsith S,et al. The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal[J]. AAPS PharmSciTech, 2014, 15(5): 1163-1171
    [15] 刘聪颖,胡建华,杨东,等. 多重响应性介孔二氧化硅纳米微球的制备及载药研究[J]. 化学学报(Liu CY,Hu JH,Yang D,et al. Preparation and drug-loading of multi-responsive mesoporous silica nanospheres[J]. Acta Chim Sin), 2009, 67(8): 843-849
    [16] Chen X,Sun H,Hu J,et al. Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery[J]. Colloids Surf B Biointerfaces, 2017, 152: 77-84
    [17] Darvishi B,Farahmand L,Majidzadeh-AK. Stimuli-responsive mesoporous silica NPs as non-viral dual siRNA/chemotherapy carriers for triple negative breast cancer[J]. Mol Ther Nucleic Acids, 2017, 7: 164-180
    [18] Liu Y,Xu M,Chen Q,et al. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser[J]. Int J Nanomedicine, 2015, 10: 4747-4761
    [19] You Y,Hu H,He L,et al. Differential effects of polymer-surface decoration on drug delivery, cellular retention, and action mechanisms of functionalized mesoporous silica nanoparticles [J]. Chem Asian J, 2015, 10(12): 2744-2754
    [20] Thapa RK,Nguyen HT,Gautam M,et al. Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer[J]. Drug Deliv, 2017, 24(1): 1690-1702
    [21] Liu Z,Tao Z,Zhang Q,et al. YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells[J]. Cancer Chemother Pharmacol,2018,81 (4): 687-695
    [22] Liu Q,Xu N,Liu L,et al. Dacarbazine-loaded hollow mesoporous silica nanoparticles grafted with folic acid for enhancing anti-metastatic melanoma response[J]. ACS Appl Mater Interfaces, 2017, 9(26): 21673-21687
    [23] Kumar P,Tambe P,Paknikar KM,et al. Folate/N-acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study[J]. Colloids Surf B Biointerfaces, 2017, 156: 203-212
    [24] Pascual L,Cerqueira-Coutinho C,García-Fernández A,et al. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications [J]. Nanomedicine, 2017, 13(8): 2495-2505
    [25] Ding Y,Song Z,Liu Q,et al. An enhanced chemotherapeutic effect facilitated by sonication of MSN[J]. Dalton Trans, 2017, 46(35): 11875-11883
    [26] Gui W,Zhang J,Chen X,et al. N-Doped graphene quantum dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery[J]. Microchim Acta, 2018, 185(1): 66
    [27] Quan G,Pan X,Wang Z,et al. Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery[J]. J Nanobiotechnol, 2015, 13: 7.doi:10.1186/s12951-015-0068-6
    [28] Aznar E,Mondragón L,Ros-Lis JV,et al. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles[J]. Angew Chem Int Ed Engl, 2011, 50 (47): 11172-11175
    [29] Wang Z,Chang Z,Lu M,et al. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma[J]. Biomaterials, 2018, 154: 147-157
    [30] Liu J,Bu W,Pan L,et al. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica[J]. Angew Chem Int Ed Engl, 2013, 52(16): 4375-4379
    [31] Yang Y,Wang A,Jia Y,et al. Peptide p160-coated silica nanoparticles applied in photodynamic therapy[J]. Chem Asian J, 2014, 9(8): 2126-2131
    [32] Lee J,Kim H,Han S,et al. Stimuli-responsive conformational conversion of peptide gatekeepers for controlled release of guests from mesoporous silica nanocontainers[J]. J Am Chem Soc, 2014, 136(37): 12880-12883
    [33] Gong H,Xie Z,Liu M,et al. Research on redox-responsive mesoporous silica nanoparticles functionalized with PEG via a disulfide bond linker as drug carrier materials[J]. Colloid Polym Sci, 2015, 293(7): 2121-2128
    [34] Park K,Park SS,Yun YH. Mesoporous silica nanoparticles functionalized with a redoxresponsive biopolymer[J]. J Porous Mater, 2017, 24(5): 1215-1225
    [35] Sha L,Wang D,Mao Y,et al. Hydrophobic interaction mediated coating of Pluronics on mesoporous silica nanoparticle with stimuli responsiveness for cancer therapy[J]. Nanotechnology, 2018, 29(34): 345101
    [36] de la Torre C,Domínguez-Berrocal L,Murguía JR,et al. ε-polylysine-capped mesoporous silica nanoparticles as carrier of the C9h peptide to induce apoptosis in cancer cells[J]. Chemistry, 2018, 24(8):1890-1897
    [37] Cheng YJ,Luo GF,Zhu JY,et al. Enzyme-induced and tumor targeted drug delivery system based on multifunctional mesoporous silica nanoparticles[J]. ACS Appl Mater Interfaces, 2015, 7(17): 9078-9087
    [38] Tukappa A,Ultimo A,de la Torre C,et al. Polyglutamic acid-gated mesoporous silica nanoparticles for enzyme-controlled drug delivery[J]. Langmuir, 2016, 32(33): 8507-8515
    [39] de la Torre C,Mondragón L,Coll C,et al. Cathepsin-B induced controlled release from peptide-capped mesoporous silica nanoparticles[J]. Chemistry, 2014, 20(47): 15309-15314
    [40] Saroj S,Rajput SJ. Tailor-made pH-sensitive polyacrylic acid functionalized mesoporous silica nanoparticles for efficient and controlled delivery of anti-cancer drug Etoposide[J]. Drug Dev Ind Pharm, 2018, 44(7): 1198-1211
    [41] Martínez-Carmona M,Lozano D,Colilla M,et al. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment[J]. Acta Biomater, 2018, 65: 393-404
    [42] Yan T,Cheng J,Liu Z,et al. pH-Sensitive mesoporous silica nanoparticles for chemo- photodynamic combination therapy [J]. Colloids Surf B Biointerfaces, 2018, 161: 442-448
    [43] Wei Y,Gao L,Wang L,et al. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy [J]. Drug Deliv,2017,24(1): 681-691
    [44] Huang G,Liu R,Hu Y,et al. FeOOH-loaded mesoporous silica nanoparticles as a theranostic platform with pH-responsive MRI contrast enhancement and drug release[J]. Sci China Chem, 2018, 61(7): 806-811
    [45] Shah PV,Rajput SJ. Facile synthesis of chitosan capped mesoporous silica nanoparticles: A pH responsive smart delivery platform for raloxifene hydrochloride[J]. AAPS Pharm Sci Tech,2018, 19(3): 1344-1357
    [46] Liang C,Wang H,Zhang M,et al. Self-controlled release of Oxaliplatin prodrug from d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) functionalized mesoporous silica nanoparticles for cancer therapy[J]. J Colloid Interface Sci, 2018, 525: 1-10
    [47] Bertucci A,Prasetyanto EA,Septiadi D,et al. Combined delivery of temozolomide and anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells [J]. Small, 2015, 11(42): 5687-5695
    [48] Luo GF,Chen WH,Liu Y,et al. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide[J]. Sci Rep, 2014, 4: 6064

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700