超声辅助电沉积Ni-Co/Y_2O_3复合镀层的电化学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrasonic-wave-assisted Electrodeposition of Ni-Co/Y_2O_3 Composite Coatings: an Electrochemical Study
  • 作者:王一雍 ; 周新宇 ; 金辉 ; 梁智鹏
  • 英文作者:WANG Yiyong;ZHOU Xinyu;JIN Hui;LIANG Zhipeng;School of Materials & Metallurgy,University of Science and Technology Liaoning;
  • 关键词:超声辅助电沉积 ; Ni-Co/Y_2O_3复合镀层 ; 电化学测试 ; 电结晶 ; 曲线拟合 ; 动力学参数
  • 英文关键词:ultrasonic-wave-assisted electrodeposition;;Ni-Co/Y_2O_3 composite coating;;electrochemical test;;electro-crystallization;;curve fitting;;kinetic parameter
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:辽宁科技大学材料与冶金学院;
  • 出版日期:2019-03-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51674141);; 辽宁省自然科学基金(201602401)~~
  • 语种:中文;
  • 页:CLDB201906020
  • 页数:6
  • CN:06
  • ISSN:50-1078/TB
  • 分类号:98-103
摘要
为了研究Y_2O_3纳米粒子在与Ni~(2+)和Co~(2+)共沉积过程中的电化学行为,揭示Ni-Co/Y_2O_3复合镀层的电结晶机理,针对Ni-Co/Y_2O_3的超声辅助电沉积进行了循环伏安(CV)、计时电流(CA)、交流阻抗(EIS)等电化学测试,并通过对实验曲线的拟合计算出共沉积过程的动力学参数。结果表明,Y_2O_3纳米粒子与基质金属的共沉积使形核/生长电位正移,阴极极化度减小。Ni-Co合金和Ni-Co/Y_2O_3复合镀层的形核/生长符合Scharifker-Hill瞬时成核模型:低负电位下,复合镀层的成核速率更高,Y_2O_3纳米粒子对Ni-Co合金的形核起促进作用;高负电位下,Y_2O_3纳米粒子抑制了Ni-Co合金的形核过程。拟合计算结果与实验曲线的理论分析一致。EIS测试表明,Y_2O_3纳米粒子对电极/电解液界面处的双电层无明显影响,但会减小复合共沉积过程的电荷转移电阻。
        The aim of this work is to study the electrochemical behavior of Y2O3nanoparticles in co-deposition process with Ni2+and Co2+,and to explore the electro-crystallization mechanism of composite coating formation.Our study involved cyclic voltammetry(CV),chronoamperometry(CA),and electrochemical impedance spectroscopy(EIS)tests for the ultrasonic-wave-assisted electrodeposition process of a plating system that contained Ni~(2+),Co~(2+)and Y_2O_3nanoparticles,and obtained the kinetic parameters of co-precipitation by a calculation based on fitting the experimental curves.The results indicated that the addition of Y_2O_3nanoparticles into the Ni~(2+)-Co~(2+)system causes a positive shift for the initial deposition potential of Ni~(2+)and Co~(2+),and a decline in cathodic polarization.The nucleation/growth of both Ni-Co alloy and Ni-Co/Y_2O_3composite coatings coincide well with Scharifker-Hill instantaneous nucleation model.Y_2O_3nanoparticles can promote the nucleation of Ni~(2+)and Co~(2+)at low negative potentials,resulting in a higher nucleation rate for the Ni-Co/Y_2O_3composite coating compared with the Ni-Co alloy coating,but will exert the opposite influence on the nucleation of Ni-Co alloy if more negative potentials are applied.The calculation results were in correspondence with the theoretical analysis over the experimental curves.According to the EIS result,Y_2O_3nanoparticles have inconspicuous effect on the electric double layer at the electrode/electrolyte interface,but lead to diminishing charge transfer resistance in co-deposition.
引文
1 Zhou H F,Du N,Zhao Q,et al.Electeoplating & Finishing,2005,24(6),41(in Chinese).周海飞,杜楠,赵晴.电镀与涂饰,2005,24(6),41.
    2 Du N,Zhou H F,Zhao Q,et al.Journal of Materials Engineering, 2008(2),23(in Chinese).杜楠, 周海飞, 赵晴,等.材料工程,2008(2),23.
    3 Tudela I, Zhang Y, Pal M, et al.Surface & Coatings Technology,2015,276,89.
    4 Chen W,Gao W. Composites Part A Applied Science & Manufacturing,2011,42(11),1627.
    5 Chen W,Gao W.Electrochimica Acta,2010,55,6865.
    6 Ranganatha S, Venkatesha T V, Vathsala K. Surface & Coatings Technology,2012,208(6),64.
    7 Cheng J Q,Yao S W,Wang H Z, et al. Materials of Machanical Engineering,2005,29(3),55(in Chinese).程敬泉, 姚素薇, 王宏智,等. 机械工程材料,2005,29(3),55.
    8 Beltowska-Lehman E, Indyka P, Bigos A, et al. Materials & Design,2015,80,1.
    9 Ataie S A, Zakeri A. Journal of Alloys & Compounds,2016,674,315.
    10 Zhou X W,Ou Y C,Qiao Y X, et al. Acta Metallurgica Sinica,2017(2),140(in Chinese).周小卫, 欧阳春, 乔岩欣,等. 金属学报,2017(2),140.
    11 Xue Y J,Si D H,Liu H B, et al.The Chinese Journal of Nonferrous Me-tals,2011,21(9),2157(in Chinese).薛玉君, 司东宏, 刘红彬,等.中国有色金属学报,2011,21(9),2157.
    12 Tebbakh S, Beniaiche A, Fenineche N, et al. Transactions of the IMF,2013,91(1),17.
    13 Wu G, Li N, Zhou D R. Journal of Chemical Engineering of Chinese Universities,2005,19(1),48.武刚, 李宁, 周德瑞. 高校化学工程学报,2005,19(1),48.
    14 Wu G, Li N, Wang D L, et al. Materials Chemistry & Physics,2004,87(2),411.
    15 Abou-Krisha M M, Assaf F H, Toghan A A. Journal of Solid State Electrochemistry,2007,11(2),244.
    16 Wang M J, Wang R C, Peng C Q, et al.The Chinese Journal of Nonferrous Metals,2013(3),765(in Chinese).王美娟, 王日初, 彭超群,等. 中国有色金属学报,2013(3),765.
    17 Song L X, Zhang Z, Zhang J Q, et al. Acta Metallurgica Sinica,2011(1),123(in Chinese).宋利晓, 张昭, 张鉴清,等. 金属学报,2011(1),123.
    18 Scharifker B, Hills G. Electrochimica Acta,1983,28(7),879.
    19 Raeissi K, Saatchi A, Golozar M A. Journal of Applied Electrochemistry,2003,33(7),635.
    20 Qian Z H, Zhou H F, Du N, et al. Rare Metal Materials and Enginee-ring,2014(7),1633(in Chinese).钱洲亥, 周海飞, 杜楠,等. 稀有金属材料与工程,2014(7),1633.
    21 Chu G, Liu S Z.Journal of Central South University (Science and Technology),2007,38(3),474(in Chinese).楚广, 刘生长. 中南大学学报(自然科学版),2007,38(3),474.
    22 Xu M L, Zhang Z F, Yang X W, et al. Materials Review,2006,20(9),158.徐明丽, 张正富, 杨显万,等. 材料导报,2006,20(9),158.
    23 Vathsala K.Applied Surface Science,2011,257(21),8929.
    24 Basavanna S, Naik Y A. Journal of Applied Electrochemistry,2009,39(10),1975.
    25 Palomar-Pardavé M, Scharifker B R, Arce E M, et al. Electrochimica Acta,2005,50(24),4736.
    26 Diard J P, Gorrec B L, Montella C. Journal of Electroanalytical Chemistry,2001,499(1),67.
    27 Qu N S, Zhu D, Chan K C. Scripta Materialia,2006,54(7),1421.
    28 Monshi A, Foroughi M R, Monshi M R. World Journal of Nano Science & Engineering,2012,2(2),154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700