阴离子对Acidithiobacillus ferrooxidans氧化活性及次生铁矿物形成影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of anions on the oxidation activity of Acidithiobacillus ferrooxidans and the formation of secondary iron minerals
  • 作者:宋永伟 ; 陈婷 ; 王鹤茹 ; 杨俊 ; 曹艳晓 ; 周立祥
  • 英文作者:SONG Yong-wei;CHEN Ting;WANG He-ru;YANG Jun;CAO Yan-xiao;ZHOU Li-xiang;Department of Environmental Science and Engineering,Zhongnan University of Economics and Law;Department of Environmental Engineering,Nanjing Agricultural University;
  • 关键词:嗜酸性氧化亚铁硫杆菌 ; 阴离子 ; 生物氧化活性 ; 次生铁矿物
  • 英文关键词:A.ferrooxidans;;anions;;biological oxidation activity;;secondary iron minerals
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中南财经政法大学环境科学与工程系;南京农业大学环境工程系;
  • 出版日期:2018-02-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金重点资助项目(21637003);; 湖北省自然科学基金资助项目(2016CFB289)
  • 语种:中文;
  • 页:ZGHJ201802023
  • 页数:7
  • CN:02
  • ISSN:11-2201/X
  • 分类号:176-182
摘要
酸性矿山废水(AMD)具有酸度高并含有大量可溶性Fe、硫酸根及重(类)金属的特点,采用生物矿化方法促使AMD中Fe向羟基硫酸铁次生矿物转变,对AMD后期石灰中和减少氢氧化铁和废石膏的产生,提高中和效率具有实际意义.通过模拟酸性矿山废水,考察了Cl~-、NO_3~-、PO_4~(3-)3种阴离子对嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)体系中p H值、Fe~(2+)氧化率、总Fe沉淀率、次生铁矿物矿相的影响.结果表明,高浓度阴离子对A.ferrooxidans氧化Fe~(2+)能力具有抑制作用.A.ferrooxidans对阴离子的耐受性依次为PO_4~3->NO_(3-)>Cl~-.阴离子浓度在A.ferrooxidans耐受范围内时,其对Fe~(2+)的生物氧化速率基本没有影响.但高浓度阴离子会通过抑制A.ferrooxidans的氧化活性,从而间接影响Fe~(3+)的水解成矿过程,导致培养终点时总Fe沉淀率降低和次生铁矿物产量减少.受Fe~(3+)供应速率降低的影响,次生铁矿物的合成途径易向施氏矿物转变.
        Acid mine drainage(AMD) is characterized typically by high acidity, soluble Fe, sulfate, and toxic metals. Thus, it is of practical significance to promote the transformation of soluble Fe and sulfate into secondary iron hydroxysulfate minerals by biomineralization of A. ferrooxidans, which is helpful in enhancing subsequent lime neutralization efficiency of AMD due to reducing the production of ferric hydroxide and waste gypsum. In the study, we investigated that the influence of three anions(Cl~-、NO_3~-、PO_4~(3-)) on the p H value, bio-oxidation rate of Fe~(2+), total Fe deposition efficiency, and phases of secondary iron minerals in simulated AMD containing A. ferrooxidans. The results indicated that a higher concentration of monovalent cations inhibited the biological oxidation of Fe~(2+). The tolerance ability of A. ferrooxidans to the three anions varied significantly(PO_4~(3-)>NO_3~->Cl~-). In addition, for anion concentrations lower than those tolerated byA. ferrooxidans, Fe~(2+) oxidation was not affected. However, high concentration of anion can inhibited the hydrolysis and mineralization of Fe~(3+) indirectly by inhibiting the oxidation activity of A. ferrooxidans, resulting in a decrease in the total Fe precipitation rate and a reduction in the secondary iron minerals production. Influenced by the decrease of Fe~(3+) supply rate, the synthetic pathway of secondary iron minerals was biased towards the schwertmannite.
引文
[1]Singer P C,Stumm W.Acidic mine drainage:the ratedetermining step[J].Science,1970,167(3921):1121-1123.
    [2]Vhahangwele M.A novel technology for neutralizing acidity and attenuating toxic chemical species from acid mine drainage using cryptocrystalline magnesite tailings[J].Journal of Water Process Engineering,2016,10(6):67-77.
    [3]Wu Z L,Zou L C,Chen J H,et al.Column bioleaching characteristic of copper and iron from Zijinshan sulfide ores by acid mine drainage[J].International Journal of Mineral Processing,2016,149:18-24.
    [4]Wei X,Wolfe F A.Minerals and Mine Drainage[J].Water Environment Research,2013,85(10):1515-1547.
    [5]Liu G W,Bai R C.Development of the acidic mining wastewater treatment technology[J].Applied Mechanics and Materials,2013,295-298:1372-1375.
    [6]Song Y W,Wang M,Liang J R,et al.High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation[J].Hydrometallurgy,2014,143(3):23-27.
    [7]Lee W C,Lee S W,Yun S T,et al.A novel method of utilizing permeable reactive kiddle(PRK)for the remediation of acid mine drainage[J].Journal of Hazardous Materials,2016,301:332-341.
    [8]Meschke K,Herdegen V,Aubel T,et al.Treatment of opencast lignite mining induced acid mine drainage(AMD)using a rotating microfiltration system[J].Journal of Environmental Chemical Engineering,2015,4(4):2848-2856.
    [9]Diao Z H,Shi T H,Wang S Z,et al.Silane-based coatings on the pyrite for remediation of acid mine drainage[J].Water Research,2013,47(13):4391-4402.
    [10]Valente T,Grande J A,Torre M L,et al.Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines,Iberian Pyrite Belt(SW,Spain)[J].Applied Geochemistry,2013,39(8):11-25.
    [11]Zhu J Y,Gan M,Zhang D,et al.The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability[J].Materials Science and Engineering C,2013,33(5):2679-2685.
    [12]宋永伟,赵博文,霍敏波,等.温度对嗜酸性硫杆菌活性和生物成因次生铁矿物形成的影响[J].环境科学,2013,34(8):3264-3271.
    [13]Zhang S L,Jia S Y,Yu B,et al.Sulfidization of As(V)-containing schwertmannite and its impact on arsenic mobilization[J].Chemical Geology,2016,420(20):270-279.
    [14]Gan M,Sun S G,Zheng Z H,et al.Adsorption of Cr(VI)and Cu(II)by Al PO4modified biosynthetic schwertmannite[J].Applied Surface Science,2015,356(30):986-997.
    [15]Mihone K M,Hana F,Sanda R,et al.Assessment of metal risks from different depths of jarosite tailing waste of Trep?a Zinc Industry,Kosovo based on BCR procedure[J].Journal of Geochemical Exploration,2015,148:161-168.
    [16]廖岳华.施氏矿物的生物合成及去除水中砷的效果与机理研究[D].南京:南京农业大学,2008.
    [17]陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(VI)的吸附[J].中国环境科学,2006,26(1):11-15.
    [18]王长秋,马生凤,鲁安怀.黄钾铁矾类矿物沉淀去除Cr(VI)的初步研究[J].矿物岩石地球化学通报,2006,25(4):335-338.
    [19]Asta M P,Cama J,Martínez M,et al.Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications[J].Journal of Hazardous Materials,2009,171(1-3):965-972.
    [20]邓志明,周正华.湿法炼锌浸出沉铁探讨[J].湖南有色金属,2002,18(1):23-25,45.
    [21]Dutrizac J E,Kaiman S.Synthesis and properties of jarosite-type compounds[J].Canadian Mineralogist,1976,14:151-158.
    [22]Dutrizac J E.The effectiveness of jarosite species for precipitating sodium jarosite[J].Journal of the Minerals,Metals and Materials Society,1999,51(12):30-32.
    [23]宋永伟,王鹤茹,梁剑茹,等.温度和p H对生物成因羟基硫酸铁矿物的综合影响研究[J].环境科学学报,2016,36(10):3683-3690.
    [24]刘奋武,高诗颖,王敏,等.镁离子对氧化亚铁硫杆菌生物合成次生铁矿物的影响[J].中国环境科学,2014,34(3):713-719.
    [25]刘奋武,高诗颖,崔春红,等.Ca2+对酸性硫酸盐环境中次生铁矿物合成的影响[J].中国环境科学,2015,35(4):1142-1148.
    [26]Nemati M,Harrison S T L,Hansford G S,et al.Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects[J].Biochemical Engineering Journal,1998,3(1):171-190.
    [27]宋永伟,王鹤茹,曹艳晓,等.低分子有机酸对硫杆菌活性的抑制作用及对土壤重金属脱除的影响[J].环境科学,2016,37(5):368-375.
    [28]Mousavi S M,Yaghmaei S,Salimi F,et al.Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans.PartⅡ:Bioreactor experiments[J].Fuel,2007,86(7/8):993-999.
    [29]Kumar S R,Gandhi K S.Modelling of Fe2+oxidation by Thiobacillus ferrooxidans[J].Applied Microbiology and Biotechnology,1990,33(5):524-528.
    [30]刘清,徐伟昌,张宇.重金属离子对氧化亚铁硫杆菌活性的影响[J].铀矿冶,2004,23(3):155-157.
    [31]刘欣伟,冯雅丽,李浩然,等.镁离子浓度对氧化亚铁硫杆菌生长动力学的影响[J].中国有色金属学报,2012,26(8):2353-2359.
    [32]张成桂,张倩,王晶,等.阴离子对嗜酸性氧化亚铁硫杆菌生长和硫氧化活性的影响[J].中国有色金属学报,2009,19(12):2237-2242.
    [33]Harahuc L,Lizama H M,Suzuki I.Selective inhibition of the oxidation of Ferrous iron or sulfur in Thiobacillus ferrooxidans[J].Applied and Environmental Microbiology,2000,66(3):1031-1037.
    [34]Liao Y,Zhou L,Liang J,et al.Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different p H condition[J].Materials Science and Engineering C,2009,29(1):211-215.
    [35]郭勤,韩文艳,李江,等.氯离子对氧化亚铁硫杆菌和氧化亚铁钩端微螺菌活性的影响[J].有色金属,2015,(1):42-45.
    [36]Gramp J P,Sandy Jones F,Bigham J M,et al.Monovalent cation concentrations determine the types of Fe(III)hydroxysulfate precipitates formed in bioleach solutions[J].Hydrometallurgy,2008,94(1-4):29-33.
    [37]柏双友.酸性富铁硫酸盐环境中生物成因次生羟基硫酸铁矿物形成及其机理[D].南京:南京农业大学,2012.
    [38]Sasaki K,Konno H.Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions[J].The Canadian mineralogist,2000,38(1):45-56.
    [39]Regenspurg S,Brand A,Peiffer S.Formation and stability of schwertmannite in acid mining lakes[J].Geochimica Et Cosmochimica Acta,2004,68(6):1185-1197.
    [40]Dold B.Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction(DXRD)[J].Applied Geochemistry,2003,18(10):1531-1540.
    [41]Loan M,Richmond W R,Parkinson G M.On the crystal growth of nanoscale schwertmannite[J].Journal of Crystal Growth,2005,275(1/2):1875-1881.
    [42]刘奋武,卜玉山,田国举.温度与p H对生物合成施氏矿物在酸性环境中溶解行为及对Cu2+吸附效果的影响[J].环境科学学报,2013,33(9):2445-2451.
    [43]JCPDS(Joint Committee on Powder Diffraction Standards).Mineral Powder Diffraction Files[Z].International Center for Diffraction Data,Swarthmore:Pennsyvania,2002.
    [44]Eskandarpour A,Onyango M S,Ochieng A,et al.Removal of fluoride ions from aqueous solution at low p H using schwertmannite[J].Journal of Hazardous Materials,2008,152(2):571-519.
    [45]Wang H M,Bigham J M,Tuovinen O H.Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms[J].Materials Science and Engineering C,2006,26(4):588-592.
    [46]Bai S Y,Xu Z H,Wang M,et al.Both initial concentrations of Fe(II)and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments[J].Materials Sciences and Engineering C,2012,32(8):2323-2329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700