基于非线性激光超声的微裂纹检测及定位
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection and Location of Small Crack Using Nonlinear Laser Ultrasonic
  • 作者:刘永强 ; 杨世锡 ; 甘春标 ; 万海波
  • 英文作者:LIU Yongqiang;YANG Shixi;GAN Chunbiao;WAN Haibo;State Key Lab of Fluid Power Transmission and Control,Zhejiang University;College of Mechanical and Automotive Engineering,Zhejiang University of Water Resources and Electric Power;
  • 关键词:激光超声 ; 非线性 ; 裂纹检测 ; 裂纹定位
  • 英文关键词:laser-generated ultrasonic;;nonlinear waves;;crack detection;;crack location
  • 中文刊名:ZDCS
  • 英文刊名:Journal of Vibration,Measurement & Diagnosis
  • 机构:浙江大学流体动力与机电系统国家重点实验室;浙江水利水电学院机械与汽车工程学院;
  • 出版日期:2019-06-15
  • 出版单位:振动.测试与诊断
  • 年:2019
  • 期:v.39;No.191
  • 基金:国家自然科学基金资助项目(51375434)
  • 语种:中文;
  • 页:ZDCS201903029
  • 页数:9
  • CN:03
  • ISSN:32-1361/V
  • 分类号:197-203+229-230
摘要
金属构件在加工及服役过程中,其表面及内部会产生微裂纹,外载荷作用下,微裂纹会逐渐扩展,成为影响构件安全运行的重大隐患,因而有必要对构件进行无损检测。提出一种基于非线性激光超声的微裂纹检测技术方法,通过提取激光超声波与微裂纹作用后非线性特征参数的改变量进行裂纹检测及定位。利用激光辐照构件激发超声波,根据构件时域动态响应信号重构状态空间,提出一种非线性特征参数提取方法对裂纹影响下状态空间改变量进行评估以识别裂纹,进而利用扫描激光法实现裂纹定位分析。搭建实验系统对铝合金表面不同宽度微裂纹进行检测,结果表明,所提方法能有效检测并定位构件表面微裂纹。
        The produce of small surface and inner cracks is inevitable in metallic structural that is subjected to complex and cyclic loading.The growth of the crack threatens the safety of structure,and may results in serious consequences.It is very important to detect the presence of cracks by non-destructive testing.In this paper,a novel technique for detection and location of small cracks is presented.The metallic structural is radiated by lasers to produce ultrasonic and the state space predictive model is constructed based on the dynamical responses in time domain.A nonlinear damage feature is then extracted from the model to indentify the crack.Furthermore,the crack is located and visualized by using the feature extracted from the entire scanned area.An example of the technique and experimental detection are given for alloys with different cracks.The experimental results show the reliability of the technique.
引文
[1]李拯,吴维亮,屈文忠,等.基于非线性超声调制的疲劳裂纹识别方法[J].中国机械工程,2015,26(17):2384-2388.Li Zheng,Wu Weiliang,Qu Wenzhong,et al.Fatigue crack detection using nonlinear ultrasonic modulation method[J].China Mechanical Engineering,2015,26(17):2384-2388.(in Chinese)
    [2]邵泽波,刘兴德.无损检测[M].北京:化学工业出版社,2011:37-86.
    [3]Jiao Jingping,Sun Junjun,Li Nan,et al.Micro-crack detection using a collinear wave mixing technique[J].NDT&E International,2014,62:122-129.
    [4]Hess O,Lomonosov A M,Mayer A P.Laser-based linear and nonlinear guided elastic waves at surfaces(2D)and wedges(1D)[J].Ultrasnoics,2014,54(1):39-55.
    [5]Mezil S,Chigarev N,Tournat V.Evaluation of crack parameters by a nonlinear frequency mixing laser ultrasonics method[J].Ultrasonics,2016,69:225-235.
    [6]敦怡,师小红,王广龙,等.微纳米裂纹的非线性超声检测[J].光学精密工程,2011,19(1):132-137.Dun Yi,Shi Xiaohong,Wang Guanglong,et al.Nonlinear ultrasonic test of micro-nano crack[J].Optics and Precision Engineering,2011,19(1):132-137.(in Chinese)
    [7]吴斌,颜丙生.非线性超声检测镁合金疲劳的仿真和试验[J].振动、测试与诊断,2012,32(1):96-100.Wu Bin,Yan Bingsheng.Simulation and experiment of fatigue damage detection in magnesium alloy using nonlinear wave[J].Journal of Vibration,Measurement&Diagnosis,2012,32(1):96-100.(in Chinese)
    [8]屈文忠,李拯,王芝,等.基于非线性超声调制方法的损伤识别与定位[J].振动、测试与诊断,2016,36(5):852-857.Qu Wenzhong,Li Zheng,Wang Zhi,et al.Damage detection and location using nonlinear ultrasonic modulation method[J].Journal of Vibration,Measurement&Diagnosis,2016,36(5):852-857.(in Chinese)
    [9]Mezil S,Chigarev N,Tournat V,et al.Two dimensional nonlinear frequency-mixing photo-acoustic imaging of a crack and observation of crack phantoms[J].Journal of Applied Physics,2013,114(17):1-17.
    [10]Li Nan,Sun Junjun,Jiao Jingpin,et al.Quantitative evaluation of micro-cracks using nonlinear ultrasonic modulation method[J].NDT&E International,2016,79:63-72.
    [11]Yoder N C,Adams D E.Vibro-acoustic modulation using a swept probing signal for robust crack detection[J].Structural Health Monitoring,2010,9(3):257-267.
    [12]Liu Peipei,Hoon S,Byeongjin P.Baseline-free damage visualization using noncontact laser nonlinear ultrasonics and state space geometrical changes[J].Smart Materials and Structures,2015,24(6):1-13.
    [13]Nichols J M.Structural health monitoring of offshore structures using ambient excitation[J].Applied Ocean Research,2003,25(3):101-114.
    [14]赵先进,徐玉秀.柴油机表面低频振动的状态空间重构及其应用[J].振动、测试与诊断,2008,28(3):259-264.Zhao Xianjin,Xu Yuxiu.State space reconstruction of surface low frequency vibration of vehicle diesel and its application[J].Journal of Vibration,Measurement&Diagnosis,2008,28(3):259-264.(in Chinese)
    [15]Taken F.Detecting strange attractors in turbulence dynamical systems and turbulence[M].Berlin:Springer,1980:366-381.
    [16]Grassberger P,Procaccia I.Measuring the strangeness of strange attractors[J].Physic D,1983,9(1/2):189-208.
    [17]Rosenstein M T,Collins J J,Luca C.Reconstruction expansion as a geometry-based framework for choosing proper delay time[J].Physic D,1994,73:82-98.
    [18]Kim H S,Eykholt R,Salas J D.Nonlinear dynamics,delay time,and embedding windows[J].Physic D,1999,127(1/2):48-60.
    [19]Fraser A M,Swinny H L.Independent coordinates for strange attractors from mutual information[J].Physical Review A,1986,33(2):1134-1140.
    [20]Fraser A M,Swinney H L.Independent coordinates for strange attractors from mutual information[J].Physical Review A,1986,33(2):1134-1140.
    [21]Liangyue C.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D,1997,110(1/2):43-50.
    [22]Todd M D,Nichols J M,Pecora L M,et al.Vibration-based damage assessment utilizing state space geometry changes:local attractor variance ratio[J].Smart Materials&Structures,2001,10(5):1000-1008.
    [23]Lei Yaguo,He Zhengjia,Zi Yanyang,et al.New clustering algorithm-based fault diagnosis using compensation distance evaluation technique[J].Mechanical Systems and Signal Processing,2008,22(2):419-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700