基于环雾流理论的气井临界流速预测模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction model of critical gas velocities in gas wells based on annular mist flow theory
  • 作者:沈伟伟 ; 邓道明 ; 刘乔平 ; 宫敬
  • 英文作者:SHEN Weiwei;DENG Daoming;LIU Qiaoping;GONG Jing;National Engineering Laboratory for Pipeline Safety,MOE Key Laboratory of Petroleum Engineering,Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum;Sinopec Chongqing Fuling Shale Gas Exploration and Production Corporation;
  • 关键词:斜井 ; 天然气 ; 积液 ; 临界气体流速 ; 预测 ; 环雾流 ; 模型
  • 英文关键词:deviated wells;;natural gas;;liquid loading;;critical gas velocity;;prediction;;annular mist flow;;model
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国石油大学(北京)油气管道输送安全国家工程实验室石油工程教育部重点实验室城市油气输配技术北京市重点实验室;中石化重庆涪陵页岩气勘探开发有限公司;
  • 出版日期:2019-01-22 18:43
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家重大科技专项(2016ZX05066005-001,2016ZX05028-004-001)
  • 语种:中文;
  • 页:HGSZ201904010
  • 页数:13
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:83-95
摘要
井筒积液是伴随气井生产的常见现象,积液会导致气井产量降低,严重时甚至会使得气井停产。精确的积液预测有助于及时采取措施以减少积液带来的危害,而临界气体流速是气井积液预测的关键。回顾了气井积液预测的相关研究,指出了最小压降模型、液滴模型的局限性,基于现有实验观察认为液膜模型有较好的适用性。考虑到斜井中液膜周向不均匀分布及气相核心中液滴夹带,提出了更符合实际的环雾流模型用于不同管径、不同井斜角下的气井积液预测。基于以往室内实验数据和现场生产数据,将新模型与现有6种积液预测模型进行对比评价。综合考虑模型预测结果正确率及预测误差,认为新的环雾流模型较其他模型预测结果更优,可准确方便地对气井积液进行预测。
        Liquid loading, which can reduce the gas rate and even kill the gas well, is a common phenomenon associated with gas well production. Accurate prediction of liquid loading will help operators take measures in time to reduce the hazards, and the critical gas velocity is the key parameter to predict the liquid loading in gas wells.The related researches on the prediction of liquid loading in gas wells are reviewed, and the limitations of the minimum pressure drop model and the liquid droplet model are pointed out. Based on the experimental observations, it is considered that the liquid film model manifests better applicability. Considering the droplet entrainment in gas core and the uneven film distribution along the circumference of the tubing in deviated gas wells,a more practical annular mist flow model is proposed to judge the liquid loading of gas wells with different tubing diameters and inclination angles. The previous indoor experimental and field operating data are used to compare the new model with the six existing prediction models for liquid loading. Considering correctness and prediction error of the model prediction results, it is considered that the new annular mist flow model is better than other models, and can be used to predict liquid loading in gas well accurately and conveniently.
引文
[1] Luo S. Inception of liquid loading in gas wells and possible solutions[D]. Tulsa:The University of Tulsa, 2013.
    [2] Chen D C, Yao Y, Fu G, et al. A new model for predicting liquid loading in deviated gas wells[J]. Journal of Natural Gas Science and Engineering, 2016, 34:178-184.
    [3] Belt R J. On the liquid film in inclined annular flow[D]. Delft:Technische Universiteit Delft, 2007.
    [4] Yuan G, Pereyra E, Sarica C, et al. An experimental study on liquid loading of vertical and deviated gas wells[C]//SPE Production and Operations Symposium. Oklahoma City,Oklahoma, USA:Society of Petroleum Engineers, 2013:SPE-164516-MS.
    [5] Fan Y, Pereyra E, Torres C, et al. Experimental study on the onset of intermittent flow and pseudo-slug characteristics in upward inclined pipes[C]//17th International Conference on Multiphase Production Technology. Cannes, France:BHR Group, 2015:BHR-2015-B1.
    [6] Skopich A, Pereyra E, Sarica C. Pipe-diameter effect on liquid loading in vertical gas wells[J]. SPE Production&Operations,2015, 30(2):164-176.
    [7] Brito R, Pereyra E, Sarica C. Effect of well trajectory on liquid removal in horizontal gas wells[J]. Journal of Petroleum Science and Engineering, 2017, 156:1-11.
    [8] Turner R G, Hubbard M G, Dukler A E. Analysis and prediction of minimum flow rate for the continuous removal of liquid from gas wells[J]. Journal of Petroleum Technology, 1969, 21(11):1475-1482.
    [9] Coleman S B, Clay H B, Mccurdy D G, et al. A new look at predicting gas-well load-up[J]. Journal of Petroleum Technology,1991, 43(3):329-333.
    [10] Nosseir M A, Darwich T A, Sayyouh M H, et al. A new approach for accurate prediction of loading in gas wells under different flowing conditions[J]. SPE Production&Facilities, 2000, 15(4):241-246.
    [11] Guo B Y, Ghalambor A, Xu C. A systematic approach to predicting liquid loading in gas wells[J]. SPE Production and Operations Symposium, 2006, 21(1):81-88.
    [12] Fadairo A, Femi-Oyewole D, Falode O A. An improved tool for liquid loading in a gas well[C]//SPE Nigerian Annual International Conference and Exhibition. Lagos, Nigeria:Society of Petroleum Engineers, 2013:SPE-167552-MS.
    [13] Fadairo A, Olugbenga F, Sylvia N C. A new model for predicting liquid loading in a gas well[J]. Journal of Natural Gas Science and Engineering, 2015, 26:1530-1541.
    [14] Zhou D S, Yuan H. A new model for predicting gas-well liquid loading[J]. SPE Production&Operations, 2010, 25(2):172-181.
    [15] Li M, Li S L, Sun L T. New view on continuous-removal liquids from gas wells[J]. SPE Production&Facilities, 2002, 17(1):42-46.
    [16] Awolusi O S. Resolving discrepancies in predicting critical rates in low pressure stripper gas wells[D]. Lubbock:Texas Tech University, 2005.
    [17]王毅忠,刘庆文.计算气井最小携液临界流量的新方法[J].大庆石油地质与开发, 2007, 26(6):82-85.Wang Y Z, Liu Q W. A new method for calculating the minimum critical flow rate of gas wells[J]. Petroleum Geology&Oilfield Development in Daqing, 2007, 26(6):82-85.
    [18] Belfroid S, Schiferli W, Alberts G, et al. Prediction onset and dynamic behaviour of liquid loading gas wells[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA:Society of Petroleum Engineers, 2008:SPE-115567-MS.
    [19]杨文明,王明,陈亮,等.定向气井连续携液临界产量预测模型[J].天然气工业, 2009, 29(5):82-84.Yang W M, Wang M, Chen L, et al. A prediction model on calculation of continuous liquid carrying critical production of directional gas wells[J]. Natural Gas Industry, 2009, 29(5):82-84.
    [20]于继飞,管虹翔,顾纯巍,等.海上定向气井临界流量预测方法[J].特种油气藏, 2011, 18(6):117-119.Yu J F, Guan H X, Gu C W, et al. Prediction of critical flow rate for offshore directional gas wells[J]. Special Oil&Gas Reservoirs,2011, 18(6):117-119.
    [21]李丽,张磊,杨波,等.天然气斜井携液临界流量预测方法[J].石油与天然气地质, 2012, 33(4):650-654.Li L, Zhang L, Yang B, et al. Prediction method of critical liquid carrying flow rate for directional gas wells[J]. Oil&Gas Geology,2012, 33(4):650-654.
    [22]王琦.水平井井筒气液两相流动模拟实验研究[D].成都:西南石油大学, 2014.Wang Q. Experimental study on gas-liquid flowing in the wellbore of horizontal well[D]. Chengdu:Southwest Petroleum University,2014.
    [23] Keuning A. The onset of liquid loading in inclined tubes[D].Eindhoven:Eindhoven University of Technology, 1998.
    [24] van pipe-flows[D]. Delft:Technische Universiteit Delft, 2008.
    [25] Veeken K, Hu B, Schiferli W. Gas-well liquid loading field data analysis and multiphase flow modeling[J]. SPE Production&Operations, 2010, 25(3):275-284.
    [26] Zabaras G, Dukler A E, Moalem-Maron D. Vertical upward cocurrent gas‐liquid annular flow[J]. AIChE Journal, 1986, 32(5):829-843.
    [27] Zhang H Q, Wang Q, Sarica C, et al. Unified model for gas-liquid pipe flow via slug dynamics(1):Model development[J]. Journal of Energy Resources Technology, 2003, 125(4):266-273.
    [28] Zhang H Q, Wang Q, Sarica C, et al. Unified model for gas-liquid pipe flow via slug dynamics(2):Model validation[J]. Journal of Energy Resources Technology, 2003, 125(4):811-820.
    [29] Barnea D, Shoham O, Taitel Y, et al. Gas-liquid flow in inclined tubes:flow pattern transitions for upward flow[J]. Chemical Engineering Science, 1985, 40(1):131-136.
    [30] Barnea D. A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1987, 13(1):1-12.
    [31] Fore L B, Beus S G, Bauer R C. Interfacial friction in gas-liquid annular flow:analogies to full and transition roughness[J].International Journal of Multiphase Flow, 2000, 26(11):1755-1769.
    [32] Li J, Almudairis F, Zhang H. Prediction of critical gas velocity of liquid unloading for entire well deviation[C]//International Petroleum Technology Conference. Kuala Lumpur, Malaysia,2014:IPTC-17846-MS.
    [33] Gurner M, Pereyra E, Sarica C, et al. An experimental study of low liquid loading in inclined pipes from 90°to 45°[C]//SPE Production and Operations Symposium. Oklahoma City,Oklahoma, USA:Society of Petroleum Engineers, 2015:SPE-173631-MS.
    [34] Alsaadi Y, Pereyra E, Torres C, et al. Liquid loading of highly deviated gas wells from 60°to 88°[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas, USA:Society of Petroleum Engineers, 2015:SPE-174852-MS.
    [35] Andritsos N, Hanratty T J. Influence of interfacial waves in stratified gas-liquid flows[J]. AIChE Journal, 1987, 33(3):444-454.
    [36] Shekhar S, Kelkar M, Hearn W J, et al. Improved prediction of liquid loading in gas wells[J]. SPE Production&Operations,2017, 32(4):539-550.
    [37] Paz R J, Shoham O. Film-thickness distribution for annular flow in directional wells:horizontal to vertical[J]. SPE Production&Operations, 1999, 4(2):83-91.
    [38] Barnea D. Transition from annular flow and from dispersed bubble flow—unified models for the whole range of pipe inclinations[J].International Journal of Multiphase Flow, 1986, 12(5):733-744.
    [39] Wallis G B. One-dimensional Two-phase Flow[M]. New York:McGraw-Hill, 1969:315-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700