4-氨基安替比林电子光谱及溶剂效应理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical study of electronic spectra of 4-aminoantipyrine and solvent effect
  • 作者:鲁礼林 ; 陈俊 ; 阮祝华 ; 倪嘉琪 ; 舒红飞
  • 英文作者:Lu Lilin;Chen Jun;Ruan Zhuhua;Ni Jiaqi;Shu Hongfei;College of Chemistry and Chemical Engineering,Wuhan University of Science and Technology;Hubei Coal Conversion and New Carbon Materials Key Laboratory,Wuhan University of Science and Technology;
  • 关键词:4-氨基安替比林 ; 电子光谱 ; 溶剂效应 ; 含时密度泛函理论 ; 氢键
  • 英文关键词:4-aminoantipyrine;;electronic spectra;;solvent effect;;time-dependent density functional theory;;hydrogen bonding
  • 中文刊名:YEKJ
  • 英文刊名:Journal of Wuhan University of Science and Technology
  • 机构:武汉科技大学化学与化工学院;武汉科技大学煤转化与新型炭材料湖北省重点实验室;
  • 出版日期:2019-01-07 13:47
  • 出版单位:武汉科技大学学报
  • 年:2019
  • 期:v.42;No.184
  • 基金:国家自然科学基金资助项目(21671154,U1732147);; 湖北省教育厅科学研究计划资助项目(B2015355)
  • 语种:中文;
  • 页:YEKJ201901006
  • 页数:7
  • CN:01
  • ISSN:42-1608/N
  • 分类号:35-41
摘要
采用含时密度泛函理论方法(TD-PBE0)研究了4-氨基安替比林(4-AAP)在水和乙醇溶液环境中的电子光谱特性,通过电子跃迁轨道分析归属了4-AAP电子光谱谱带的跃迁轨道贡献并探究了其电子跃迁特征。研究结果表明,4-AAP在乙醇溶液中理论吸收谱带与实验谱带吻合较好,但其在水溶液中计算所得吸收谱带波长与实验所得相应值相差较大,溶剂水分子可与4-AAP通过氢键强烈相互作用形成复合物,诱导电子跃迁吸收谱带发生明显移动,氢键结合位点对其电子光谱中的最强吸收峰位置亦有影响,呈现显著的溶剂化效应。分子动力学模拟获得了水溶液中4-AAP溶剂团簇模型4-AAP-(H_2O)_3,基于此模型所得的理论电子光谱吸收谱带与实验光谱特征谱带波长相吻合,并从分子水平上对团簇结构吸收谱带的电子跃迁贡献进行了分析和归属。
        The electronic spectra of 4-aminoantipyrine(4-AAP)in ethanol and aqueous solutions were investigated by using the time-dependent density functional theory(TD-DFT)with hybrid PBE0 function.Electronic transition character and orbital transition contributions of the electronic spectra of 4-AAP were studied by topological analysis of molecular orbitals involved in electron transitions of absorption bands.The results show that the calculated wavelengths of 4-AAP absorption bands are in good agreement with experimental wavelength in ethanol solution but there is considerable deviation between theoretical and experimental wavelengths in aqueous solution.Hydrogen bonding complexes between 4-AAP and water molecules have formed in aqueous environment and thus have induced distinct shift in the absorption band wavelength.Hydrogen bondings at different sites also show distinct effect on the strongest absorption band wavelength,indicating that solvent effect shows significant influence on the electronic spectra property of 4-AAP.Geom etry of hydrogen bonding cluster(4-AAP-(H_2O)_3)in aqueous solution has been obtained via molecular dynamics simulations.The calculated spectra based on 4-AAP-(H_2O)_3 geometry are in good agreement with experimental spectra,and orbital contribution of electron transition is also explored by topological analysis of molecular orbitals which is related to the absorption bands.
引文
[1] Cocco M T,Congiu C,Lilliu V,et al.Synthesis and in vitro antitumoral activity of new hydrazinopyrimidine-5-carbonitrile derivatives[J].Bioorganic and Medicinal Chemistry,2006,14(2):366-372.
    [2] Stratil P,Klejdus B,KubňV.Determination of phenolic compounds and their antioxidant activity in fruits and cereals[J].Talanta,2007,71(4):1741-1751.
    [3] Gupta V K,Singh A K,Kumawat L K.A turn-on fluorescent chemosensor for Zn2+ions based on antipyrine schiff base[J].Sensors and Actuators B:Chemical,2014,204:507-514.
    [4] Kumawat L K,Mergu N,Asif M,et al.Novel synthesized antipyrine derivative based “naked eye”colorimetric chemosensors for Al 3+and Cr3+[J].Sensors and Actuators B:Chemical,2016,231:847-859.
    [5] Pu S Z,Zhang C C,Fan C B,et al.Multi-controllable properties of an antipyrine-based diarylethene and its high selectivity for recognition of Al 3+[J].Dyes and Pigments,2016,129:24-33.
    [6] You Q H,Chan P S,Chan W H,et al.A quinolinyl antipyrine based fluorescence sensor for Zn2+and its application in bioimaging[J].RSC Advances,2012(2):11078-11083.
    [7] Lohar S,Sahana A,Banerjee A,et al.Antipyrine based arsenate selective fluorescent probe for living cell imaging[J].Analytical Chemistry,2013,85(3):1778-1783.
    [8] Dol I,Knochen M.Flow-injection spectrophotometric determination of salbutamol with 4-aminoantipyrine[J].Talanta,2004,64(5):1233-1236.
    [9] van Staden J F,Beyene N W,Stefan R I,et al.Sequential injection spectrophotometric determination of ritodrine hydrochloride using 4-aminoantipyrine[J].Talanta,2005,68(2):401-405.
    [10]Vojinovic′V,Esteves F M F,Cabral J M S,et al.Bienzymatic analytical microreactors for glucose,lactate,ethanol,galactose and 1-amino acid monitoring in cell culture media[J].Analytica Chimica Acta,2006,565(2):240-249.
    [11]朱权,吕寿田,丁邦东,等.4-氨基安替比林分光光度法测定维生素B6[J].扬州工学院学报,1997,9(2):46-49.
    [12]Adamo C,Barone V.Toward reliable density functional methods without adjustable parameters:the PBE0 model[J].Journal of Chemical Physics,1999,110(13):6158-6170.
    [13]Bauernschmitt R,Ahlrichs R.Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J].Chemical Physics Letters,1996,256(4-5):454-464.
    [14]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09,Revision C2[CP].Gaussian,Inc.,Wallingford,CT,USA,2009.
    [15]Singh T P,Vijayan M.Structural studies of analgesics and their interactions.I.The crystal and molecular structure of antipyrene[J].Acta Crystallographica B,1973,29(4):714-720.
    [16]Swaminathan J,Ramalingam M,Sethuraman V,et al.Vibrational spectroscopic studies and DFT calculations of 4-aminoantipyrine[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,73(4):593-600.
    [17]Adamo C,Barone V.Inexpensive and accurate predictions of optical excitations in transition-metal complexes:the TDDFT/PBE0route[J].Theoretical Chemistry Accounts,2000,105(2):169-172.
    [18]Alata I,Broquier M,Dedonder-Lardeux C,et al.Microhydration effects on the electronic spectra of protonated polycyclic aromatic hydrocarbons:[naphthalene-(H2O)n=1,2]H+[J].Journal of Chemical Physics,2011,134(7):074307.
    [19]Oncak M,Slavícek P,Fárník M,et al.Photochemistry of hydrogen halides on water clusters:simulations of electronic spectra and photodynamics,and comparison with photodissociation experiments[J].Journal of Physical Chemistry A,2011,115(23):6155-6168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700