粉末固相烧结的动力学蒙特卡洛模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Kinetic Monte Carlo simulation of solid-state sintering of powder
  • 作者:王晓勉 ; 黄龙霄 ; 秦湘阁
  • 英文作者:WANG Xiaomian;HUANG Longxiao;QIN Xiangge;School of Materials Science and Engineering,Jiamusi University;
  • 关键词:烧结动力学 ; 扩散 ; 致密度 ; Potts模型
  • 英文关键词:sintering kinetics;;diffusion;;density;;Potts model
  • 中文刊名:ZTSX
  • 英文刊名:Chinese Journal of Stereology and Image Analysis
  • 机构:佳木斯大学材料科学与工程学院;
  • 出版日期:2017-06-25
  • 出版单位:中国体视学与图像分析
  • 年:2017
  • 期:v.22;No.86
  • 基金:国家自然科学基金(51271089);; 佳木斯大学研究生科技创新项目(LM2015_002)
  • 语种:中文;
  • 页:ZTSX201702008
  • 页数:7
  • CN:02
  • ISSN:11-3739/R
  • 分类号:36-42
摘要
本文用动力学蒙特卡罗方法模拟了粉末固相烧结过程,研究了模型参数以及固相扩散、孔隙迁移及空位湮灭速率对烧结致密化动力学的影响。结果表明,在烧结中期,晶粒之间的烧结颈增大,烧结体的致密度迅速提高,固固界面的迁移对烧结体的致密化起主要作用,固固界面的迁移事件发生的概率越大,致密化速率越高,烧结体致密度越大;而在烧结后期,仅有少量孔隙存在于晶界处,晶界空位的湮灭对烧结体致密化起主要作用,空位湮灭事件发生的概率越大,单位时间内空位湮灭的越快,最终烧结体致密度越高。
        In this paper,the kinetic Monte Carlo method is used to simulate powder solid-phase sintering process. The effects of model parameters such as rates of solid diffusion,pore migration and vacancy annihilation on densification kinetics are investigated. Results show that in the middle phase of sintering,the sintering neck gradually grows,and the densification of the sintered body increases rapidly. As the migration of solid interface plays a major role in densification of the sintered body during this period,the higher of the probability of the migration of solid interface,the greater the densification rate,the greater the density of the structure. In the final phase of sintering,only a small amount of pores exist in the grain boundary. The vacancy annihilation in the grain boundaries plays a major role in the densification of the sintered body so that the greater the probability of the vacancy annihilation event,the faster the vacancy annihilation in the unit time,the higher the final sintered density.
引文
[1]Frenkel J.Viscous flow of crystalline bodies under the action of surface tension[J].Journal of Physic,1945,9(5):385-391.
    [2]Kuczynski G C.Self-diffusion in sintering of metallic particles[M].Sintering Key Papers.Springer Netherlands,1990:509-527.
    [3]Hsueh C H,Evans A G,Coble R L.Microstructure development during final/intermediate stage sintering-I.Pore/grain boundary separation[J].Acta Metallurgica,1982,30(7):1269-1279.
    [4]Raut J S,Bhagat R B,Fichthorn K A.Sintering of aluminum nanoparticles:A molecular dynamics study[J].Nanostructured Materials,1998,10(5):837-851.
    [5]Zeng P,Zajac S,Clapp P C,et al.Nanoparticle sintering simulations[J].Materials Science&Engineering A,1998,252(2):301-306.
    [6]Zhou H,Derby J J.Three-dimensional finite-element analysis of viscous sintering[J].Journal of the American Ceramic Society,2010,81(81):533-540.
    [7]Kucherenko S,Pan J,Yeomans J A.A combined finite element and finite difference scheme for computer simulation of microstructure evolution and its application to poreboundary separation during sintering[J].Computational Materials Science,2000,18(1):76-92.
    [8]Moitra A,German R M.Investigation on sintering mechanism of nanoscale tungsten powder based on atomistic simulation[J].Acta Materialia,2010,58(11):3939-3951.
    [9]Li J,Sarkar S,Cox W T,et al.Diffusive molecular dynamics and its application to nanoindentation and sintering[J].Physical Review B,2011,84(5):2250-2262.
    [10]Cheng B,Ngan A H W.The sintering and densification behaviour of many copper nanoparticles:A molecular dynamics study[J].Computational Materials Science,2013,74(74):1-11.
    [11]吴茂,常玲玲,崔亚男,等.纳米金颗粒熔化与烧结过程的分子动力学模拟[J].粉末冶金材料科学与工程,2013,18(6):775-782.Wu Mao,Chang Lingling,Cui Yanan,et al.Molecular dynamics simulation of Au nanoparticles melting and sintering processes[J].Materials Science and Engineering of Powder Metallurgy,2013,18(6):775-782.
    [12]Henz B J,Hawa T,Zachariah M.Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles[J].Molecular Simulation,2009,35(10-11):804-811.
    [13]Cheng B,Ngan A H W.The crystal structures of sintered copper nanoparticles:A molecular dynamics study[J].International Journal of Plasticity,2013,47(2):65-79.
    [14]Musazadeh M H,Dehghani K.The effect of crystallographic orientation on sintering behavior of Ni nanoparticles:A molecular dynamic study[J].Journal of Computational&Theoretical Nanoscience,2013,10(6):1497-1502.
    [15]Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
    [16]Hassold G N,Chen I W,Srolovitz D.J.Computer simulation of final-stage sintering:I,model,kinetics,and microstructure[J].Journal of the American Ceramic Society,1990,73(10):2857-2864.
    [17]Dudek M R,Gouyet J F,Kolb M.Q+1 state Potts model of late stage sintering[J].Surface Science,1998,401(2):220-226.
    [18]Sutton R A,Schaffer G B.An atomistic simulation of solid state sintering using Monte Carlo methods[J].Materials Science and Engineering:A,2002,335(1):253-259.
    [19]Kunaver U,Kolar D.Three-dimensional computer simulation of anisotropic grain growth in ceramics[J].Acta Materialia,1998,46(13):4629-4640.
    [20]Tikare V,Miodownik M A,Holm E A.Three-dimensional simulation of grain growth in the presence of mobile pores[J].Journal of the American Ceramic Society,2001,84(6):1379-1385.
    [21]Srolovitz D J,Anderson M P,Sahni P S,et al.Computer simulation of grain growth-II.Grain size distribution,topology,and local dynamics[J].Acta Metallurgica,1984,32(5):793-802.
    [22]Srolovitz D J,Grest G S,Anderson M P,et al.Computer simulation of recrystallization II.heterogeneous nucleation growth[J].Acta Metallurgica,1988,36:2115.
    [23]Rautiainen T T,Sutton A P.Influence of the atomic diffusion mechanism on morphologies,kinetics,and the mechanisms of coarsening during phase separation[J].Physical Review B Condensed Matter,1999,59(21):13681-13692.
    [24]Tikare V,Cawley J D.Numerical simulation of grain growth in liquid phase sintered materials-I.Model[J].Acta Materialia,1998,46(4):1333-1342.
    [25]Tikare V,Holm E A.Simulation of grain growth and pore migration in a thermal gradient[J].Journal of the American Ceramic Society,2010,81(3):480-484.
    [26]Tikare V,Braginsky M,Olevsky E A.Numerical simulation of solid-state Sintering:I,Sintering of three particles[J].Journal of the American Ceramic Society,2003,86(1):49-53.
    [27]Tikare V,Braginsky M,Bouvard D,et al.Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact[J].Computational Materials Science,2010,48(2):317-325.
    [28]Qin X,Sun J,Liu G Q.Three-dimensional simulation of sintering of ceramics[C]//Materials Science Forum.Trans Tech Publications,2005,475:1287-1290.
    [29]Anon.SPPARKS Kinetic Monte Carlo Simulator[CP/OL].[2017-05-20].http://spparks.sandia.gov/
    [30]Stukowski A.Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J].Modelling&Simulation in Materials Science&Engineering,2010,18(1):61-64.
    [31]Burke J E.Role of grain boundaries in sintering[M].Journal of the American Ceramic Society,1957,40(3):80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700