全固态锂电池关键材料—固态电解质研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Key Materials for All-Solid-State Lithium Batteries
  • 作者:陈龙 ; 池上森 ; 董源 ; 李丹 ; 张博晨 ; 范丽珍
  • 英文作者:CHEN Long;CHI Shangsen;DONG Yuan;LI Dan;ZHANG Bochen;FAN Lizhen;Institute of Advanced Materials and Technology,Beijing University of Science and Technology;
  • 关键词:全固态锂电池 ; 固态电解质 ; 界面
  • 英文关键词:all-solid-state lithium battery;;solid electrolyte;;interface
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:北京科技大学新材料技术研究院;
  • 出版日期:2017-10-11 15:08
  • 出版单位:硅酸盐学报
  • 年:2018
  • 期:v.46;No.346
  • 基金:国家自然科学基金(51532002)项目
  • 语种:中文;
  • 页:GXYB201801004
  • 页数:14
  • CN:01
  • ISSN:11-2310/TQ
  • 分类号:27-40
摘要
全固态锂电池具有能量密度高、循环寿命长和高安全性等优点,成为当前的研究热点。固态电解质是全固态锂电池的核心,主要包括氧化物、硫化物、聚合物以及复合型固态电解质。当前,发展全固态锂电池的关键是设计和制备具有高离子电导率的固态电解质,解决固态电解质与电极间的固–固界面问题。本文综述了全固态锂电池固态电解质以及固态电解质与电极间固–固界面的稳定兼容问题的最新进展,并展望了未来全固态锂电池的研究重点和发展方向。
        All-solid-state lithium batteries have become an important focus due to their high energy density,long cycling life and excellent safety.As the key part of all-solid-state lithium batteries,solid electrolytes include oxide,sulfide,polymer and composite.The key issues for developing all-solid-sate lithium rechargeable batteries include the design and preparation of solid electrolytes with high ionic conductivities,and solution of the interface resistance between solid electrolytes and electrodes.In this article,the recent developments and relative issues concerning the solid electrolytes and the interface stabilities are reviewed,and the key issues and development direction on all-solid-state lithium batteries are prospected.
引文
[1]ARMAND M,TARASCON J M.Building better batteries[J].Nature,2008,451(7179):652–657.
    [2]ZHANG R,LI N W,CHENG X B,et al.Advanced micro/nanostructures for lithium metal anodes[J].Adv Sci,2017,4(3):1600445(1–13).
    [3]TARASCON J M,ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359–367.
    [4]MANTHIRAM A,YU X,WANG S.Lithium battery chemistries enabled by solid-state electrolytes[J].Nat Rev Mater,2017,2:16103(1–5).
    [5]CUSSEN E J.The structure of lithium garnets:cation disorder and clustering in a new family of fast Li+conductors[J].Chem Commun.2006,37(4):412–413.
    [6]MURUGAN R,THANGADURAI V,WEPPNER W.Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J].Angew Chem Int Ed,2007,46(41):7778–7781.
    [7]RETTENWANDER D,BLAHA P,LASKOWSKI R,et al.DFT study of the role of Al3+in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12garnet[J].Chem Mater,2014,26(8):2617–2623.
    [8]KATHARINA M,TEODORO L,ALESSANDRO C.Solid-state electrolytes:revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J].J Phys Chem C,2014,118(13):6668–6679.
    [9]KC S,LONGO R C,XIONG K,et al.Point defects in garnet-type solid electrolyte(c-Li7La3Zr2O12)for Li-ion batteries[J].Solid state Ionics,2014,261:100–105.
    [10]REN Y,DENG H,NAN C W,et al.Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics[J].J Eur Ceram Soc,2015,35(2):561–572.
    [11]SAKAMOTO J,RANGASAMY E,KIM H,et al.Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12[J].Nanotechnol,2013,24(42):424005.
    [12]KOKAL I,SOMER M,NOTTEN P H L,et al.Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure[J].Solid State Ionics,2011,185(1):42–46.
    [13]ZHANG Y,CHEN F,TU R,et al.Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes[J].J Power Sources,2014,268:960–964.
    [14]LI Y,WANG Z,LI C,et al.Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering[J].J Power Sources,2014,248:642–646.
    [15]NI J E,CASE E D,SAKAMOTO J S,et al.Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J].J Mater Sci,2012,47(23):7978–7985.
    [16]KOTOBUKI M,MUNAKATA H,KANAMURA K.Fabrication of all-solid-state rechargeable lithium-ion battery using mille-feuille structure of Li0.35La0.55Ti O3[J].J Power Sources,2011,196(16):6947–6950.
    [17]ZHANG Q,SCHMIDT N,LAN J,et al.A facile method for the synthesis of the Li0.3La0.57Ti O3 solid state electrolyte[J].Chem Commun.2014,50(42):5593–5596.
    [18]XIONG Y,TAO H,ZHAO J,et al.Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering[J].J Alloy Compd,2011,509(5):1910–1914.
    [19]YASUHIRO H,TSUKASA I,HIROO K,et al.Lithium ion conductivity of polycrystalline perovskite La0.672–xLi3xTi O3 with ordered and disordered arrangements of the A-site ions[J].Solid State Ionics,1998,108(1/4):407–413.
    [20]YASUHIRO H,YUJI H,HIROO K,et al.Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67–xLi3xTi O3(x=0.11)[J].Solid State Ionics,1999,121(1/4):245–251.
    [21]STRAMARE S,THANGADURAI V,WEPPNER W.Lithium lanthanum titanates:A review[J].Chem Mater,2003,15(21):3974–3990.
    [22]GENG H,MEI A,LIN Y,et al.Effect of sintering atmosphere on ionic conduction and structure of Li0.5La0.5Ti O3 solid electrolytes[J].Mater Sci Eng B.2009,164(2):91–95.
    [23]BAN C W,CHOI G M.The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates[J].Solid State Ionics,2001,140(3/4):285–292.
    [24]MEI A,WANG X,NAN C W,et al.Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica[J].Solid State Ionics,2008,179(39):2255–2259.
    [25]MEI A,WANG X,NAN C W,et al.Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte[J].Electrochim Acta,2010,55(8):2958–2963.
    [26]KOBAYASHI Y,MIYASHIRO H,TAKEUCHI T,et al.All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte[J].Solid State Ionics,2002,S152–S153(02):137–142.
    [27]GOODENOUGH J B,HONG H Y P,KAFALAS J A.Fast Na+-ion transport in skeleton structures[J].Mater Res Bull,1976,11(2):203–220.
    [28]KOTOBUKI M,KOISHI M.Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources[J].Ceram Int,2013,39(4):4645–4649.
    [29]KOTOBUKI M,KOISHI M,KATO Y.Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method[J].Ionics,2013,19(12):1945–1948.
    [30]EPP V,MA Q,HAMMER E M,et al.Very fast bulk Li ion diffusivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry[J].Phys Chem Chem Phys,2015,17:32115–32121.
    [31]ZHANG T,IMANISHI N,HASEGAWA S,et al.Water-stable lithium anode with the three-layer construction for aqueous lithium–air secondary batteries[J].Electrochem Solid State Lett,2009,12(7):A132–A137.
    [32]THOKCHOM J S,KUMAR B.Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic[J].J Power Sources,2008,185(1):480–485.
    [33]XU X,WEN Z,WU X,et al.Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O(x=0.0-0.20)with good electrical and electrochemical properties[J].J Am Ceram Soc,2007,90(9):2802–2806.
    [34]BRAGA M H,FERREIRA J A,STOCKHAUSEN V,et al.Novel Li3Cl O based glasses with superionic properties for lithium batteries[J].J Mater Chem A,2014,2(15):5470–5480.
    [35]BRAGA M H,MURCHISON A J,Ferreira J A,et al.Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells[J].Energy Environ Sci,2016,9(3):948–954.
    [36]BATES J B,DUDNEY N J,GRUZALSKI G R,et al.Electrical properties of amorphous lithium electrolyte thin films[J].Solid State Ionics,1992,53–56:647–654.
    [37]HERBERT E G,TENHAEFF W E,DUDNEY N J,et al.Mechanical characterization of Li PON films using nanoindentation[J].Thin Solid Films,2011,520(1):413–418.
    [38]JOO K H,SOHN H J,VINATIER P,et al.Lithium ion conducting lithium sulfur oxynitride thin film[J].Electrochem Solid State Lett,2004,7(8):A256–A258.
    [39]WU F,LIU Y,CHEN R,et al.Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries[J].J Power Sources,2009,189(1):467–470.
    [40]XIE J,OUDENHOVEN J F M,HARKS P P R M L,et al.Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries[J].J Electrochem Soc,2015,162(3):A249–A254.
    [41]WEST W C,HOOD Z D,ADHIKARI S P,et al.Reduction of charge-transfer resistance at the solid electrolyte-electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source[J].J Power Sources,2016,312:116–122.
    [42]NISULA M,SHINDO Y,KOGA H,et al.Atomic layer deposition of lithium phosphorus oxynitride[J].Chem Mater,2015,27(20):6987–6993.
    [43]PEARSE A J,SCHMITT T E,FULLER E J,et al.Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte[J].Chem Mater,2017,29(8):3740–3753.
    [44]ZHENG N,BU X,FENG P.Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J].Nature,2003,426(6965):428–432.
    [45]KANNO R,HATA T,KAWAMOTO Y,et al.Synthesis of a new lithium ionic conductor,thio-LISICON-lithium germanium sulfide system[J].Solid State Ionics,2000,130(1):97–104.
    [46]KAMAYA N,HOMMA K,YAMAKAWA Y,et al.A lithium superionic conductor[J].Nat Mater,2011,10(9):682–689.
    [47]KATO Y,HORI S,SAITO T,et al.High-power all-solid-state batteries using sulfide superionic conductors[J].Nat Energy,2016,1:16030(1–3).
    [48]KOMIYA R,HAYASHI A,MORIMOTO H,et al.Solid state lithium secondary batteries using an amorphous solid electrolyte in the system(100-x)(0.6Li2S-0.4Si S2)·x Li4Si O4,obtained by mechanochemical synthesis[J].Solid State Ionics,2001,140(1/2):83–87.
    [49]OHTOMO T,HAYASHI A,TATSUMISAGO M,et al.All-solid-state lithium secondary batteries using the 75Li2S-25P2S5,glass and the70Li2S-30P2S5,glass-ceramic as solid electrolytes[J].J Power Sources,2013,233:231–235.
    [50]MIZUNO F,HAYASHI A,TADANAGA K,et al.New,highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J].Adv Mater,2005,17(7):918–921.
    [51]HAYASHI A,HAMA S,MINAMI T,et al.Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J].Electrochem Commun,2003,5(2):111–114.
    [52]UJIIE S,HAYASHI A,TATSUMISAGO M.Structure,ionic conductivity and electrochemical stability of Li2S-P2S5-Li I glass and glass-ceramic electrolytes[J].Solid State Ionics,2012,211:42–45.
    [53]UJIIE S,INAGAKI T,HAYASHI A,et al.Conductivity of70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides[J].Solid State Ionics,2014,263:57–61.
    [54]OHTOMO T,HAYASHI A,TATSUMISAGO M,et al.Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives[J].J Mater Sci,2013,48(11):4137–4142.
    [55]ARMAND M B,CHABAGNO J M,DUCLOT M J.Poly-ethers as solid electrolytes[C]//Intenational Conference on Fast Ion Transport in Solids,Electrodes and Electrolytes.USA:Lake Geneva,WI.1979,131–136.
    [56]WRIGH P V.Polymer electrolytes—The early days[J].Electrochim Acta,1998,43(10/11):1137–1143.
    [57]CHU P P,JEN H P,FANGREY LO A,et al.Exceedingly high lithium conductivity in novolac type phenolic resin/PEO blends[J].Macromolecules,1999,32(14):4738–4740.
    [58]SENGWA R J,DHATARWAL P,CHOUDHARY S.Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes:Correlation between ionic conductivity and dielectric parameters[J].Electrochim Acta,2014,142:359–370.
    [59]KONO M.Network polymer electrolytes with free chain ends as internal plasticizer[J].J Electrochem Soc,1998,145(5):1521–1527.
    [60]YOUNG N P,DEYAUX D,KHURANA R,et al.Investigating polypropylene-poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries[J].Solid State Ionics,2014,263(10):87–94.
    [61]PORCARELLI L,GERBALDI C,BELLA F,et al.Super soft all-ethylene xxide polymer electrolyte for safe all-solid lithium batteries[J].Sci Rep,2016,6(1):19892.
    [62]PAN Q,SMITH D M,QI H,et al.Hybrid electrolytes with controlled network structures for lithium metal batteries[J].Adv Mater,2015,27(39):5995–6001.
    [63]OKUMURA T,NISHIMURA S.Lithium ion conductive properties of aliphatic polycarbonate[J].Solid State Ionics,2014,267:68–73.
    [64]TOMINAGA Y,YAMAZAKI K.Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with Ti O2 nanoparticles[J].Chem Commun,2014,50(34):4448–4450.
    [65]MORIOKA T,NAKANO K,TOMINAGA Y.Ion-conductive properties of a polymer electrolyte based on ethylene carbonate/ethylene oxide random copolymer[J].Macromole Rapid Commun,2017,38(8):1600652(1–5.).
    [66]SUN B,MINDEMARK J,EDSTROM K,et al.Polycarbonate-based solid polymer electrolytes for Li-ion batteries[J].Solid State Ionics,2014,262:738–742.
    [67]MINDEMARK J,SUN B,TORMA E,et al.High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature[J].J Power Sources,2015,298:166–170.
    [68]ZHANG J,ZHAO J,YUE L,et al.Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J].Adv Energy Mater,2015,5(24):1501082.
    [69]CHAI J,LIU Z,MA J,et al.In situ generation of poly(vinylene carbonate)-based solid electrolyte with interfacial stability for Li Co O2lithium batteries[J].Adv Sci,2017,4(2):1600377.
    [70]OH B,VISSERS D,ZHANG Z,et al.New interpenetrating network type poly(siloxane-g-ethylene oxide)polymer electrolyte for lithium battery[J].J Power Sources,2003,S119-S121(6):442–447.
    [71]WANG F,HU C,LO S,et al.The investigation of electrochemical properties and ionic motion of functionalized copolymer electrolytes based on polysiloxane[J].Solid State Ionics,2009,180(4/5):405–411.
    [72]HOOPER R,LYONS L J,MAPES M K,et al.Highly conductive siloxane polymers[J].Macromolecules,2001,34(4):931–936.
    [73]ROSSI N A A,WANG Q,Amine K,et al.Silicon-containing carbonates-synthesis,characterization,and additive effects for silicon-based polymer electrolytes[J].Silicon,2010,2(4):201–208.
    [74]LI J,LIN Y,YAO H,et al.Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide)on polysiloxane[J].Chem Sus Chem,2014,7(7):1901–1908.
    [75]WALKER C N,VERSEK C,TOUMINEN M,et al.Tunable networks from thiolene chemistry for lithium ion conduction[J].ACS Macro Lett,2012,1(6):737–741.
    [76]FAN L Z,NAN C W,ZHAO S.Effect of modified Si O2 on the properties of PEO-based polymer electrolytes[J].Solid State Ionics,2003,164(1/2):81–86.
    [77]CROCE.F,SETTIMI.L,SCROSATI.B,et al.Nanocomposite,PEO-Li BOB polymer electrolytes for low temperature,lithium rechargeable batteries[J].J New Mater Electrochem Systems,2006,9(1):3–9.
    [78]ITOH T,ICHIKAWA Y,UNO T,et al.Composite polymer electrolytes based on poly(ethylene oxide),hyperbranched polymer,Ba Ti O3 and Li N(CF3SO2)2[J].Solid State Ionics,2003,156(3/4):393–399.
    [79]FAN L Z,NAN C W,DANG Z.Effect of modified montmorillonites on the ionic conductivity of(PEO)16Li Cl O4,electrolytes[J].Electrochim Acta,2002,47(21):3541–3544.
    [80]JUNG Y C,LEE S M,CHOI J H,et al.All solid-state lithium batteries assembled with hybrid solid electrolytes[J].J Electrochem Soc,2015,162(4):A704–A710.
    [81]ZHAO Y,WU C,PENG G,et al.A new solid polymer electrolyte incorporating Li10Ge P2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J].J Power Sources,2016,301:47–53.
    [82]ZHANG J,ZHAO N,ZHANG M,et al.Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries:Dispersion of garnet nanoparticles in insulating polyethylene oxide[J].Nano Energy,2016,28:447–454.
    [83]LIU W,LIU N,SUN J,et al.Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J].Nano Lett,2015,15:2740–2745
    [84]GERBALDI C,NAIR J R,KULANDAINATHAN M A,et al.Innovative high performing metal organic framework(MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J].J Mater Chem A,2014,2(26):9948–9954.
    [85]ZHOU W,GAO H,GOODENOUGH J B.Low-cost hollow mesoporous polymer spheres and all-solid-state lithium,sodium batteries[J].Adv Energy Mater,2016,6(1):1501802.
    [86]YAMADA H.Interfaces of solid electrolytes:fundamentals and applications[J].J Indian Inst Sci,2016,96(4):315–323.
    [87]WU J F,PANG W K,PETERSON V K,et al.Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries[J].ACS Appl Mater Interface,2017,9(14):12461–12468.
    [88]ZARABIAN M,BARTOLINI M,PEREIRA ALMAO P,et al.X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li-La-Zr-O solid electrolyte thin film/Li Co O2 cathode interface for all-solid-state Li batteries[J].J Electrochem Soc,2017,164(6):A1133–A1139.
    [89]LIU T,REN Y,NAN C W,et al.Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12electrolyte:Interfacial resistance[J].J Power Sources,2016,324:349–357.
    [90]KATO T,HAMANAKA T,YAMAMOTO K,et al.In-situ Li7La3Zr2O12/Li Co O2 interface modification for advanced all-solid-state battery[J].J Power Sources,2014,260:292–298.
    [91]VAN DEN BROEK J,AFYON S,RUPP J L M.Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+conductors[J].Adv Energy Mater,2016,6(19):1600736.
    [92]REN Y,SHEN Y,NAN C W,et al.Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J].Electrochem Commun,2015,57:27–30.
    [93]HAN X,GONG Y,FU K K,et al.Negating interfacial impedance in garnet-based solid-state Li metal batteries[J].Nat Mater,2016,16(5):572–575.
    [94]LI Y,XU B,XU H,et al.Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries[J].Angew Chem Int Ed,2017,56(3):753–756.
    [95]ZHOU W,WANG S,LI Y,et al.Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J].J Am Chem Soc,2016,138(30):9385–9388.
    [96]OHTA N,TAKADA K,ZHANG L,et al.Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J].Adv Mater,2006,18(17):2226–2229.
    [97]TAKADA K,OHTA N,ZHANG L,et al.Interfacial modification for high-power solid-state lithium batteries[J].Solid State Ionics,2008,179(27/32):1333–1337.
    [98]SEINO Y,OTA T,TAKADA K.High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated Li Ni0.8Co0.15Al0.05O2and a sulfide-based solid electrolyte[J].J Power Sources,2011,196(15):6488–6492.
    [99]OHTA N,TAKADA K,SAKAGUCHI I,et al.Li Nb O3-coated Li Co O2as cathode material for all solid-state lithium secondary batteries[J].Electrochem Commun,2007,9(7):1486–1490.
    [100]YAO X,LIU D,WANG C,et al.High-energy all-solid-state lithium batteries with ultralong cycle life[J].Nano Lett,2016,16(11):7148–7154.
    [101]VISBAL H,AIHARA Y,ITO S,et al.The effect of diamond-like carbon coating on Li Ni0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics[J].J Power Sources,2016,314:85–92.
    [102]WHITELEY J M,WOO J H,HU E,et al.Empowering the lithium metal battery through a silicon-based superionic conductor[J].J Electrochem Soc,2014,161(12):A1812–A1817.
    [103]WENZEL S,RANDAU S,LEICHTWEISS T,et al.Direct observation of the interfacial instability of the fast ionic conductor Li10Ge P2S12 at the lithium metal anode[J].Chem Mater,2016,28(7):2400–2407.
    [104]WENZEL S,WEBER D A,LEICHTWEISS T,et al.Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J].Solid State Ionics,2016,286:24–33.
    [105]YAMADA T,ITO S,OMODA R,et al.All solid-state lithium–sulfur battery using a glass-type P2S5-Li2S electrolyte:benefits on anode kinetics[J].J Electrochem Soc,2015,162(4):A646–A651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700