辽河油田杜84块H_2S成因探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genesis of hydrogen sulfide in Du 84 block, Liaohe Oilfield
  • 作者:侯国儒
  • 英文作者:HOU Guoru;Liaohe Oilfield Company,PetroChina;
  • 关键词:蒸汽吞吐 ; 蒸汽辅助重力泄油 ; H_2S ; 黄铁矿 ; 有机质热裂解 ; 硫酸盐热化学还原 ; 辽河油田
  • 英文关键词:cyclic steam stimulation(CSS);;steam assisted gravity drainage(SAGD);;H_2S;;pyrite;;thermal decomposition of organic sulfur compounds(TDS);;thermochemical sulfate reduction(TSR);;Liaohe Oilfield
  • 中文刊名:SYSD
  • 英文刊名:Petroleum Geology & Experiment
  • 机构:中国石油辽河油田分公司;
  • 出版日期:2019-03-28
  • 出版单位:石油实验地质
  • 年:2019
  • 期:v.41
  • 基金:国家科技重大专项“改善SAGD开发效果技术研究与应用”(2016ZX0512-002)资助
  • 语种:中文;
  • 页:SYSD201902016
  • 页数:7
  • CN:02
  • ISSN:32-1151/TE
  • 分类号:116-121+127
摘要
辽河油田杜84块超稠油由蒸汽吞吐转为蒸汽辅助重力泄油(SAGD)开发后,产生了较高浓度的H_2S,导致脱硫设施投入和油气处理成本增加。通过原油、伴生气、地层水和储层矿物地球化学测试分析,H_2S产量与原油含硫量、地层水SO_4~(2-)浓度无明显相关性,而与储层中黄铁矿含量一致性强,黄铁矿中的硫属于生物来源,同位素范围与原油基本一致,起源于原油稠化阶段,大量形成于稠油热采阶段。高温高压热模拟实验表明,注蒸汽热力采油过程中,除含硫有机质热裂解(TDS)和硫酸盐热化学还原反应(TSR)外,黄铁矿氧化分解也是H_2S形成途径之一,当注入低矿化度蒸汽对地层水稀释后,SO_4~(2-)浓度下降,黄铁矿分解是H_2S的主要生成途径,H_2S的生成和分布受控于油藏地质条件、开发方式、开发时间和受热温度。
        During the thermal recovery of extra heavy oil in the Liaohe Oilfield, the concentration of H_2S increased, which results in the increased cost of the desulfurization facility and oil-and-gas treatment. Crude oil, associated gas, formation water and reservoir minerals were analyzed and the H_2S production had no significant correlation with the sulfur content in the crude oil and the SO_4~(2-) concentration in the formation water, but had a good covariance with the pyrite content in reservoir. The sulfur in pyrite had biological source, and its isotopic range was basically consistent with that of crude oil, which originates in the thickening stage of crude oil and forms in large quantities in the thermal recovery stage of heavy oil. Except for the thermal decomposition of organic sulfur compounds(TDS) and thermochemical sulfate reduction(TSR), the thermal simulation experiment shows that the decomposition of pyrite is also one of the ways to produce H_2S in the process of steam thermal recovery. When injected, lower salinity steam dilutes the formation water and pyrite decomposition becomes the main source of H_2S. The production concentration of hydrogen sulfide was controlled by reservoir geology, the thermal recovery method, heating time and temperature.
引文
[1] GILLIS K A,THIMM H F.Simulation of gas production in SAGD[C]//SPE/PS-CIM International Conference on Horizontal Well Technology.Calgary:Society of Petroleum Engineers,2010.
    [2] 张静岩,朱光有,田建波,等.注蒸汽开采稠油过程中H2S的形成[J].天然气地球化学,2007,18(6):798-802. ZHANG Jingyan,ZHU Guangyou,TIAN Jianbo,et al.Formation of H2S during thermal recovery for viscous oil by steam[J].Natural Gas Geoscience,2007,18(6):798-802.
    [3] 王武昌,李玉星,潘鑫鑫,等.稠油及超稠油脱硫化氢技术研究[J].科学技术与工程,2010,10(4):886-890. WANG Wuchang,LI Yuxing,PAN Xinxin,et al.Study on methods of removing H2S in heavy and super heavy oil[J].Science Technology and Engineering,2010,10(4):886-890.
    [4] 朱光有,张水昌,李剑,等.中国高含硫化氢天然气的形成及其分布[J].石油勘探与开发,2004,31(3):18-21. ZHU Guangyou,ZHANG Shuichang,LI Jian,et al.Formation and distribution of hydrogen sulfide bearing gas in China[J].Petroleum Exploration and Development,2004,31(3):18-21.
    [5] 黄毅,杨俊印,吴拓,等.辽河油田稠油区块硫化氢分布特征及成因研究[J].天然气地球科学,2008,19(2):255-260. HUANG Yi,YANG Junyin,WU Tuo,et al.Distribution and origin of hydrogen sulphide in heavy oil block,Liaohe Oil-Field[J].Natural Gas Geoscience,2008,19(2):255-260.
    [6] 林日亿,罗建军,王新伟,等.非含硫金属盐对稠油水热裂解生成硫化氢影响实验[J].石油学报,2016,37(2):237-241. LIN Riyi,LUO Jianjun,WANG Xinwei,et al.An experiment on the influences of non-sulfur-bearing metal salt on hydrogen sulfide formation by aquathermolysis reaction of heavy oils[J].Acta Petrolei Sinica,2016,37(2):237-241.
    [7] 谢增业,李志生,王春怡,等.硫化氢生成模拟实验研究[J].石油实验地质,2008,30(2):192-195. XIE Zengye,LI Zhisheng,WANG Chunyi,et al.Study on generation of hydrogen sulfide by simulation experiment[J].Petroleum Geo-logy & Experiment,2008,30(2):192-195.
    [8] 林日亿,宋多培,周广响,等.热采过程中硫化氢成因机制[J].石油学报,2014,35(6):1153-1159. LIN Riyi,SONG Duopei,ZHOU Guangxiang,et al.Hydrogen sulfide formation mechanism in the process of thermal recovery[J].Acta Petrolei Sinica,2014,35(6):1153-1159.
    [9] 王建俊,鞠斌山,陈常红,等.超稠油FAST-SAGD技术影响因素分析[J].特种油气藏,2016,23(2):89-92. WANG Jianjun,JU Binshan,CHEN Changhong,et al.Analysis on influencing factors of FAST-SAGD technology for ultra-heavy oil[J].Special Oil and Gas Reservoirs,2016,23(2):89-92.
    [10] 张忠义,杨新标,冯昕.辽河油区曙一区杜84块馆陶组超稠油油藏封阻机理及封阻能力[J].油汽地质与采收率,2006,13(6):23-25. ZHANG Zhongyi,YANG Xinbiao,FENG Xin.Plugging mechanism and capacity of ultraheavy oil reservoirs in Cuantao Formation of Du 84 Block,Shu 1 area,Liaohe petroliferous province[J].Petroleum Geology and Recovery Efficiency,2006,13(6):23-25.
    [11] 田楠,牛洪彬,马团校,等.渤中坳陷渤中25-1/S油田硫化氢成因研究[J].天然气地球科学,2012,23(3):438-442. TIAN Nan,NIU Hongbing,MA Tuanxiao,et al.Hydrogen sulfide genesis in BZ 25-1/S oilfields,Bozhong Depression[J].Natural Gas Geoscience,2012,23(3):438-442.
    [12] 戴金星.中国含硫化氢的天然气分布特征、分类及其成因探讨[J].沉积学报,1985,3(4):109-120. DAI Jinxing.Distribution,classification and origin of natural gas with hydrogen sulphide in China[J].Acta Sedimentologica Sinica,1985,3(4):109-120.
    [13] 向廷生,万家云,蔡春芳.硫酸盐还原菌对原油的降解作用和硫化氢的生成[J].天然气地球科学,2004,15(2):171-173. XIANG Tingsheng,WAN Jiayun,CAI Chunfang.Treatment of crude oils using sulphate-reducing bacteria H2S formations[J].Natural Gas Geoscience,2004,15(2):171-173.
    [14] 宫俊峰,王秋霞,刘岩.不同形态硫化物对稠油热采硫化氢产生的贡献分析[J].油气地质与采收率,2015,22(4):93-96. GONG Junfeng,WANG Qiuxia,LIU Yan.Analysis on contribution of different forms of sulfides to hydrogen sulfide produced in the process of heavy oil thermal recovery[J].Petroleum Geology and Recovery Efficiency,2015,22(4):93-96.
    [15] 王潜.辽河油田油井硫化氢产生机理及防治措施[J].石油勘探与开发,2008,35(3):349-354. WANG Qian.Generation mechanism and control measures for H2S in oil wells,Liaohe Oilfield[J].Petroleum Exploration and Development,2008,35(3):349-354.
    [16] 程显彪,刘春天.四氢噻吩水热裂解反应化学平衡分析[J].石油天然气学报,2005,27(5):715-717. CHENG Xianbiao,LIU Chuntian.Chemical equilibrium analysis of hydropyrolysis of tetrahydrothiophene[J].Journal of Oil and Gas Technology,2005,27(5):715-717.
    [17] 朱光有,张水昌,梁英波.川东北飞仙关组H2S的分布与古环境的关系[J].石油勘探与开发,2005,32(4):65-69. ZHU Guangyou,ZHANG Shuichang,LIANG Yingbo.Relationship between palaeoenvironment and the distribution of H2S in Feixianguan Formation,NE Sichuan Province[J].Petroleum Exploration and Development,2005,32(4):65-69.
    [18] 王磊,韩润生,张艳,等.云南会泽铅锌矿田硫同位素研究[J].矿物岩石地球化学通报,2016,35(6):1248-1256. WANG Lei,HAN Runsheng,ZHANG Yan,et al.Sulfur isotopic geochemistry of the Huize Pb-Zn Ore Field in Yunnan Province[J].Bullitin of Mineralogy,Petrology and Geochemistry,2016,35(6):1248-1256.
    [19] 熊连桥,于福生,姚根顺,等.砂砾岩储层中黄铁矿的油气地质意义:以准噶尔盆地车60井区齐古组为例[J].岩性油气藏,2017,29(4):73-80. XIONG Lianqiao,YU Fusheng,YAO Genshun,et al.Petroleum geological significance of pyrite in glutenite reservoirs:a case of Qigu Formation in Che 60 well field,Junggar Basin[J].Litho-logic Reservoirs,2017,29(4):73-80.
    [20] 罗厚勇,刘文汇,王万春,等.四川盆地彭水地区五峰组黑色页岩中硫酸盐热化学还原反应矿物学研究[J].矿物岩石地球化学通报,2015,34(2):330-333. LUO Houyong,LIU Wenhui,WANG Wanchun,et al.Discovery of the mineralogical evidence of the thermochemical sulfate reduction in black shale[J].Bullitin of Mineralogy,Petrology and Geochemistry,2015,34(2):330-333.
    [21] 施永辉,朱岳年.天然气中H2S的分布预测[J].天然气地球科学,1994,5(1):39-42. SHI Yonghui,ZHU Yuenian.Prediction of hydrogen sulphide distribution in natural gases[J].Natural Gas Geoscience,1994,5(1):39-42.
    [22] 刘文汇,腾格尔,张中宁,等.四川盆地高硫天然气成藏机理的同位素研究[J].中国科学:地球科学,2017,47(2):166-178. LIU Wenhui,TENGER,ZHANG Zhongning,et al.An isotope study of the accumulation mechanisms of high-sulfur gas from the Sichuan Basin,southwestern China[J].Science China Earth Sciences,2016,59(11):2142-2154.
    [23] 宋多培.注蒸汽热采硫化氢生成规律研究[D].青岛:中国石油大学(华东),2015. SONG Duopei.Hydrogen sulphide formation rule of steam injection thermal recovery[D].Qingdao:China University of Petro-leum (East China),2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700