BRDF表面对燃烧气体辐射传热影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Effect of BRDF Surface on Non-gray Gas Radiative Heat Transfer
  • 作者:司梦婷 ; 何亦轩 ; 陶梦杰 ; 程强
  • 英文作者:SI Meng-Ting;HE Yi-Xuan;TAO Meng-Jie;CHENG Qiang;Huazhong University of Science & Technology;
  • 关键词:BRDF ; 富氧燃烧 ; 非灰气体辐射传热
  • 英文关键词:BRDF;;oxy-fuel combustion;;non-grey gas thermal radiation transfer
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:华中科技大学煤燃烧国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金资助项目(No.51676077)
  • 语种:中文;
  • 页:GCRB201903036
  • 页数:6
  • CN:03
  • ISSN:11-2091/O4
  • 分类号:240-245
摘要
双向反射分布函数BRDF真实描述了实际表面的反射特性,本文用BRDF表面代替传统的漫反射和镜反射表面研究了富氧燃烧过程中壁面对非灰气体辐射传热的影响。本文选取刚玉板(A1203)作为BRDF壁面,BRDF值使用NIMS-III BRDF测量系统测得,而且测量值用简化五参数模型进行了很好的拟合。比较漫反射表面和BRDF表面两种不同边界条件下的热辐射特性发现BRDF表面对热辐射有较大影响,尤其在更小的板间距、更高的表面和气体温度、含有较低浓度水蒸气时。
        The BRDF(Bidirectional Reflectance Distribution Function) surface truly described the reflection characteristics of real surface, thus is introduced into the calculation of non-grey gas radiative heat transfer in oxy-fuel combustion. This paper chooses a Al_2O_3 plate as the boundary surface, the Al_2O_3 BRDF is measured by the NIMS-III BRDF measure system. A simplified five-parameter model is applied to fit the measured BRDF, and result shows it fit the experimental BRDF value well. The thermal radiative characteristics under two different boundary conditions were compared: both the radiative source and the radiative heat flux exist difference between diffuse and BRDF surface, the effect of BRDF surface on radiative heat transfer is more obvious at smaller separation distances, higher surface and gas temperature, when containing less H_2O.
引文
[1] Snyder W C, Wan Z. BRDF Models to Predict Spectral Reflectance and Emissivity in the Thermal Infrared[J].IEEE Transactions on Geoscience and remote Sensing,1998, 36(1):214-225
    [2] Yi H-L, Tan H-P, Lu Y-P. Effect of Reflecting Modes on Combined Heat Transfer within an Anisotropic Scattering Slab[J]. J Quant Spectrosc Radiat Transfer, 2005, 95(1):1—20
    [3] Siegel R, Spuckler C. Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer[J]. Journal of Heat Transfer, 1994, 116(3):787-790
    [4] Lee H, Chen Y, Zhang Z. Directional Radiative Properties of Anisotropic Rough Silicon and Gold Surfaces[J]. Int J Heat Mass Transfer, 2006, 49(23):4482-4495
    [5] Degheidy A, Krim M A. Effects of Fresnel and Diffused Reflectivities of Light Transport in a Half-space Medium[J]. J Quanl Spectrosc Radiat Transfer, 1999, 61(6):751-7
    [6] Nicodemts F E. Reflectance Nomenclature and Directional Reflectance and Emissivity[J]. Appl Opt, 1970,9(6):1474-1475
    [7] Zhang H, W, Z, Cao Y, Zhang G. Measurement and Statistical Modeling of BRDF of Various Samples[J]. Optica applicata, 2010, 40(1):197-208
    [8] Jones A, Rabelo L C, Siarawi A T. Survey of Job Shop Scheduling Techniques[M]. New York:John WileySons, Inc, 1999
    [9] Riviere P, Sotfiani A. Updated Band Model Parameters for H_2O, CO_2, CH_4 and CO Radiation at High Temperature[J]. Int J Heat Mass Transfer, 2012, 55(13):3349-58
    [10] Andre F, Vaillon R. A Nonuniform Narrow Band Correlated-k Approximation using the k-moment Method[J]. J Quant Spectrosc Radiat Transfer, 2010, 111(12):1900-1911
    [11] Soufiani A, Taine J, High Temperature Gas Radiative Property Parameters of Statistical narrow-band model for H_2O, CO_2 and CO, and correlated-K Model for H_2O and CO_2[J]. Int J Heat, Mass Transfer, 1997, 40(4):987-991
    [12] Young S J. Nonisothermal Band Model Theory[J]. J Quant Spectrosc Radiat Transfer, 1977, 18(1):1—28
    [13] Modest M F. Radiative Heat Transfer[M]. Academic Press, 2013
    [14] Howell J R, Menguc M P, Siegel R. Thermal Radiation Heat Transfer[M]. CRC Press, 2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700