高山林线变化的更新受限机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in the study of the limitations of seedling recruitment for alpine timberline forests
  • 作者:沈维 ; 张林 ; 罗天祥
  • 英文作者:SHEN Wei;ZHANG Lin;LUO Tianxiang;Key Laboratory of Alpine Ecology and Biodiversity,Institute of Tibetan Plateau Research,Chinese Academy of Sciences;
  • 关键词:气候变化 ; 生长季冻害事件 ; 种子萌发 ; 幼苗定居 ; 林线动态
  • 英文关键词:climate change;;growing-season freezing events;;seed germination;;seedling establishment;;treeline dynamics
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院青藏高原研究所高寒生态与生物多样性重点实验室;
  • 出版日期:2016-12-19 14:41
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:中国科学院战略性先导科技专项(XDB03030402);; 国家973计划项目课题(2010CB951301)
  • 语种:中文;
  • 页:STXB201709002
  • 页数:11
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:17-27
摘要
全球林线位置对气候变暖的响应表现为上升、无变化或下降等截然不同趋势,表明影响林线位置及动态的因子十分复杂,除了较普遍认为的低温调控机制外,还存在其它控制林线位置变化的机制。林线向上迁移开始于种子向林线以上的传播及幼苗在林线以上的定居,这些过程中的限制因子均会影响林线的位移,因此研究更新过程及其限制因子对理解高山林线对气候变化的响应具有重要的科学意义。主要从种子和幼苗两个关键阶段综述高山林线森林更新的研究进展。在种子阶段,夏季积温不足导致种子产量和活力下降,风速过低和浓密灌丛限制种子向林线以上传播,近地表的霜冻/水分胁迫和灌木释放的化感物质会阻碍种子在林线以上萌发。在幼苗阶段,除冬季低温外,生长季内较大的温度日振幅和偶然出现的冻害事件也是导致幼苗死亡的重要原因,而低温环境下的强烈光照引起的低温光抑制会显著降低生长季的光合作用;土壤低温、由土壤温度昼夜变化引起的冻举事件、夏季土壤干旱可能会导致幼苗光合作用下降和死亡率上升;积雪太浅会导致生长季早期幼苗水分供应的严重缺乏,但积雪太深会导致幼苗感染真菌的可能性增加;浓密的灌木和草本植物以及植食动物的啃食也会降低林线以上的幼苗存活率。气候变暖对林线幼苗定居的影响复杂且具有很大不确定性,需要进一步研究气候变暖导致的环境因子变化对林线更新各关键阶段的影响。未来气候变暖无疑会导致生长季起始日提前,结束日推迟,这很可能会增加生长季期间尤其是早期的低温冻害事件,对高山林线树种幼苗的存活具有重要影响。在未来研究中,需要找出定义生长季冻害事件的温度阈值,利用长期气象观测数据分析增温背景下生长季早期冻害事件特征的变化趋势,并进一步开展野外模拟增温实验以深刻理解林线树种的种子萌发和幼苗定居与生长季冻害事件的关系,加强对不同地区林线树种的繁殖策略研究,这将有助于人们进一步理解不同区域林线的形成机制并预测未来气候变化条件下林线的动态变化趋势。
        Advances of alpine timberline forests during last century are not ubiquitous worldwide,suggesting additional factors and mechanisms likely affect the response of alpine timberline forests to climate warming. Upward shifts of treelines begin with seed dispersal and germination,and seedling establishment above the treeline and any limiting factors during these processes may affect treeline migration. Therefore,investigation of mechanisms controlling seedling recruitment at alpine treeline will be helpful to elucidate treeline formation and its response to future climate change. We reviewed recent advances in tree seedling recruitment at alpine treelines from the key seed and seedling stages. For the seed stage,the seed quantity and quality generally decreased with the sum temperature during summer; the seed dispersal to elevations above treeline was impeded by low wind speed,dense dwarf shrub and grass cover; the ability of seed germination above thetreeline was impaired by frost and water stresses near the ground. Also,the allelochemical properties of shrubs had negative effects on seed germination. For the seedling stage,large temperature amplitudes and freezing events during the growing season,as well as the extremely low temperature during winter,were important factors affect seedling mortality. Also the low-temperature photoinhibition resulted from the combination of low temperature and high sunlight significantly decreased seedling photosynthesis during the growing season. Besides,frost-heave activity induced by large soil temperature amplitude and soil water deficits during summer impeded seedling establishment at and above the treeline. Snowpack could keep the seedlings away from the extremely low air temperature during the winter and supply snowmelt water in the early growing season. However,too long duration of the snowpack might increase the possibility of fungal infection that promote seedling mortality. Dense shrub and grass cover above the treeline and the presence of herbivores might decrease seedling survival. In all,the influence of climate warming on seedling establishment across the timberline ecotone is complex and uncertain.Further research is needed to explore the exact effects of warmth-induced environmental changes to seedling recruitment at the alpine treeline. Since the beginning of the growing season might advance under scenarios of climate warming,which in turn led to more early-season freezing events at and above the treeline,it is important to define the temperature threshold of freezing events to analyze the relationship between growing-season freezing events and increasing temperature in the future.Based on this threshold,we can further disclose the effects of growing-season freezing events on seedling establishment at alpine treeline,which will be helpful to elucidate treeline formation and predict treeline dynamics under future climate change.
引文
[1]K9rner C,Paulsen J.A world-wide study of high altitude treeline temperatures.Journal of Biogeography,2004,31(5):713-732.
    [2]K9rner C.A re-assessment of high elevation treeline positions and their explanation.Oecologia,1998,115(4):445-459.
    [3]Danby R K,Hik D S.Variability,contingency and rapid change in recent subarctic alpine tree line dynamics.Journal of Ecology,2007,95(2):352-363.
    [4]Payette S.Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lag.Ecology,2007,88(3):770-780.
    [5]Kullman L,berg L.Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes:a landscape ecological perspective.Journal of Ecology,2009,97(3):415-429.
    [6]Greenwood S,Chen J C,Chen C T,Jump A S.Temperature and sheltering determine patterns of seedling establishment in an advancing subtropical treeline.Journal of Vegetation Science,2015,26(4):711-721.
    [7]Liang E Y,Wang Y F,Eckstein D,Luo T X.Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming.New Phytologist,2011,190(3):760-769.
    [8]Harsch M A,Hulme P E,Mc Glone M S,Duncan R P.Are treelines advancing?A global meta-analysis of treeline response to climate warming.Ecology Letters,2009,12(10):1040-1049.
    [9]K9rner C.Alpine Plant Life:Functional Plant Ecology of High Mountain Ecosystems.2nd ed.Berlin:Springer,2003.
    [10]Risser P G.The status of the science examining ecotones.Bioscience,1995,45(5):318-325.
    [11]宋洪涛,程颂,孙守琴.高山林线形成机制及假说的探讨.生态学杂志,2009,28(11):2393-2402.
    [12]Kullman L.Tree Limit dynamics of Betula pubescens ssp.tortuosa in relation to climate variability:evidence from central Sweden.Journal of Vegetation Science,1993,4(6):765-772.
    [13]Gieger T,Leuschner C.Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt.Teide,Tenerife.Flora-Morphology,Distribution,Functional Ecology of Plants,2004,199(2):100-109.
    [14]Macias-Fauria M,Johnson E A.Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes.Proceedings of the National Academy of Sciences of the United States of America,2013,110(20):8117-8122.
    [15]Smith W K,Germino M J,Hancock T E,Johnson D M.Another perspective on altitudinal limits of alpine timberlines.Tree Physiology,2003,23(16):1101-1112.
    [16]Camarero J J,Gutiérrez E.Pace and pattern of recent treeline dynamics:response of ecotones to climatic variability in the Spanish Pyrenees.Climatic Change,2004,63(1/2):181-200.
    [17]Smith W K,Germino M J,Johnson D M,Reinhardt K.The Altitude of alpine treeline:a bellwether of climate change effects.The Botanical Review,2009,75(2):163-190.
    [18]Barbeito I,Dawes M A,Rixe C,Senn J,Bebi P.Factors driving mortality and growth at treeline:a 30-year experiment of 92 000 conifers.Ecology,2012,93(2):389-401.
    [19]Elliott G P.Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains,USA.Ecology,2012,93(7):1614-1625.
    [20]Walker X,Henry G H R,Mcleod K,Hofgaard A.Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.Global Change Biology,2012,18(10):3202-3211.
    [21]Castanha C,Torn M S,Germino M J,Weibel B,Kueppers L M.Conifer seedling recruitment across a gradient from forest to alpine tundra:effects of species,provenance,and site.Plant Ecology&Diversity,2013,6(3/4):307-318.
    [22]Zurbriggen N,Httenschwiler S,Frei E S,Hagedorn F,Bebi P.Performance of germinating tree seedlings below and above treeline in the Swiss Alps.Plant Ecology,2013,214(3):385-396.
    [23]Kullman L.Tree line population monitoring of Pinus sylvestris in the Swedish Scandes,1973-2005:implications for tree line theory and climate change ecology.Journal of Ecology,2007,95(1):41-52.
    [24]Holtmeier F K.Mountain Timberlines:Ecology,Patchiness,and Dynamics Ecology,Patchiness,and Dynamics.Berlin:Springer-Verlag,2009:167-169.
    [25]Sveinbj9rnsson B,Kauhanen H,Nordell O.Treeline ecology of mountain birch in the Tornetrsk area.Ecological Bulletins,1996,45:65-70.
    [26]Cuevas J G.Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego,Chile.Journal of Ecology,2000,88(5):840-855.
    [27]Payette S,Gagnon R.Late Holocene deforestation and tree regeneration in the forest-tundra of Québec.Nature,1985,313(6003):570-572.
    [28]Juntunen V,Neuvonen S.Natural regeneration of Scots pine and Norway spruce close to the timberline in northern Finland.Silva Fennica,2006,40(3):443-458.
    [29]Holtmeier F K,Broll G.Wind as an ecological agent at treelines in North America,the Alps,and the European Subarctic.Physical Geography,2010,31(3):203-233.
    [30]Jongejans E,Telenius A.Field experiments on seed dispersal by wind in ten umbelliferous species(Apiaceae).Plant Ecology,2001,152(1):67-78.
    [31]Luoto M,SepplM.Summit peats(“peat cakes”)on the fells of Finnish Lapland:continental fragments of blanket mires?.Holocene,2000,10(2):292-241.
    [32]Green K.Causes of stability in the alpine treeline in the Snowy Mountains of Australia-a natural experiment.Australian Journal of Botany,2009,57(3):171-179.
    [33]Bader M Y,van Geloof I,Rietkerk M.High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador.Plant Ecology,2007,191(1):33-45.
    [34]Wesche K,Cierjacks A,Assefa Y,Wagner S,Fetene M,Hensen I.Recruitment of trees at tropical alpine treelines:Erica in Africa versus Polylepis in South America.Plant Ecology&Diversity,2008,1(1):35-46.
    [35]Facelli J M,Pickett S T A.Plant litter:its dynamics and effects on plant community structure.The Botanical Review,1991,57(1):1-32.
    [36]Eckstein R L,Donath T W.Interactions between litter and water availability affect seedling emergence in four familial pairs of floodplain species.Journal of Ecology,2005,93(4):807-816.
    [37]Fisher R F.Allelopathy:a potential cause of regeneration failure.Journal of Forestry,1980,78(6):346-348.
    [38]Brthen K A,Fodstad C H,Gallet C.Ecosystem disturbance reduces the allelopathic effects of Empetrum hermaphroditum humus on tundra plants.Journal of Vegetation Science,2010,21(4):786-795.
    [39]Dufour-Tremblay G,De Vriendt L,Lévesque E,Boudreau S.The importance of ecological constraints on the control of multi-species treeline dynamics in eastern Nunavik,Québec.American Journal of Botany,2012,99(10):1638-1646.
    [40]Batllori E,Camarero J J,Ninot J M,Gutiérrez E.Seedling recruitment,survival and facilitation in alpine Pinus uncinata tree line ecotones.Implications and potential responses to climate warming.Global Ecology and Biogeography,2009,18(4):460-472.
    [41]Mallik A U.Conifer regeneration problems in boreal and temperate forests with ericaceous understory:role of disturbance,seedbed limitation,and keytsone species change.Critical Reviews in Plant Sciences,2003,22(3/4):341-366.
    [42]Jones S K,Samuel Y K,Gosling P G.The effect of soaking and prechilling on the germination of noble fir seeds.Seed Science and Technology,1991,19(2):287-293.
    [43]赖江山,李庆梅,谢宗强.濒危植物秦岭冷杉种子萌发特性的研究.植物生态学报,2003,27(5):661-666.
    [44]Rawat B S,Khanduri V P,Sharma C M.Beneficial effects of cold-moist stratification on seed germination behaviors of Abies pindrow and Picea smithiana.Journal of Forestry Research,2008,19(2):125-130.
    [45]Li X J,Burton P J,Leadem C L.Interactive effects of light and stratification on the germination of some British Columbia conifers.Canadian Journal of Botany,1994,72(11):1635-1646.
    [46]Maher E L,Germino M J.Microsite differentiation among conifer species during seedling establishment at alpine treeline.Ecoscience,2006,13(3):334-341.
    [47]Germino M J,Smith W K.Sky exposure,crown architecture,and low-temperature photoinhibition in conifer seedlings at alpine treeline.Plant,Cell and Environment,1999,22(4):407-415.
    [48]Cui M Y,Smith W K.Photosynthesis,water relations and mortality in Abies lasiocarpa seedlings during natural establishment.Tree Physiology,1991,8(1):37-46.
    [49]Germino M J,Smith W K,Resor A C.Conifer seedling distribution and survival in an alpine-treeline ecotone.Plant Ecology,2002,162(2):157-168.
    [50]Mayr S.Limits in water relations//Wieser G,Tausz M,eds.Trees at Their Upper Limit:Treelife Limitation at the Alpine Timberline.Netherlands:Springer,2007:145-162.
    [51]Cavieres L A,Rada F,Azócar A,García-Nú1ez C,Cabrera H M.Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes.Acta Oecologica,2000,21(3):203-211.
    [52]Awada T,Radoglou K,Fotelli M N,Constantinidou H I A.Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes.Tree Physiology,2003,23(1):33-41.
    [53]Johnson D M,Germino M J,Smith W K.Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline.Tree Physiology,2004,24(4):377-386.
    [54]Tranquillini W.Effects of a change in temperature on the phenology,growth,photosynthesis,frost damage and frost drought of trees growing at the forest limit in the Alps//European Workshop on Interrelated Bioclimaticand Land Use Changes.Noordwijkerhout,The Netherlands:RIVM,1987:43-47.
    [55]Liu X S,Luo T X.Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla Mountains,southeast Tibet.Arctic,Antarctic,and Alpine Research,2011,43(2):229-238.
    [56]Hellmers H,Genthe M K,Ronco F.Temperature affects growth and development of Engelmann Spruce.Forest Science,1970,16(4):447-452.
    [57]Neuner G.Frost resistance at the upper timberline//Wieser G,Tausz M,eds.Trees at Their Upper Limit:Treelife Limitation at the Alpine Timberline.Netherlands:Springer,2007:171-180.
    [58]Barry R G.Mountain Weather and Climate.Cambridge:Cambridge University Press,2008:68-69.
    [59]Li RC,Luo TX,Tang Y,Du M,Zhang X.The altitudinal distribution center of a widespread cushion species is related to an optimum combination of temperature and precipitation in the central Tibetan Plateau.Journal of Arid Environments,2013,88(1):70-77.
    [60]Taschler D,Neuner G.Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary.Plant,Cell and Environment,2004,27(6):737-746.
    [61]Larcher W,Kainmüller C,Wagner J.Survival types of high mountain plants under extreme temperatures.Flora-Morphology,Distribution,Functional Ecology of Plants,2010,205(1):3-18.
    [62]K9rner C.Alpine Treelines:Functional Ecology of the Global High Elevation Tree Limits.Basel:Springer,2012:131-148.
    [63]Jordan D N,Smith W K.Energy balance analysis of night-time leaf temperatures and frost formation in a subalpine environment.Agricultural and Forest Meteorology,1994,71:359-372.
    [64]Augspurger C K,Bartlett E A.Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest.Tree Physiology,2003,23(8):517-525.
    [65]Inouye D W.Effects of climate change on phenology,frost damage,and floral abundance of montane wildflowers.Ecology,2008,89(2):353-362.
    [66]Rixen C,Dawes M A,Wipf S,Hagedorn F.Evidence of enhanced freezing damage in treeline plants during six years of CO2enrichment and soil warming.Oikos,2012,121(10):1532-1543.
    [67]Rehm E M,Feeley K J.Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.Ecology,2015,96(7):1856-1865.
    [68]Shen W,Zhang L,Liu X S,Luo T X.Seed-based treeline seedlings are vulnerable to freezing events in the early growing season under a warmer climate:evidence from a reciprocal transplant experiment in the Sergyemla Mountains,southeast Tibet.Agricultural and Forest Meteorology,2014,187(8):83-92.
    [69]Close D C,Beadle C L.The ecophysiology of foliar anthocyanin.The Botanical Review,2003,69(2):149-161.
    [70]Hughes N M,Neufeld H S,Burkey K O.Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata.New Phytologist,2005,168(3):575-587.
    [71]Akhalkatsi M,Abdaladze O,Nakhutsrishvili G,Smith W K.Facilitation of seedling microsites by Rhododendron caucasicum extends the Betula litwinowii Alpine treeline,Caucasus Mountains,Republic of Georgia.Arctic,Antarctic,and Alpine Research,2006,38(4):481-488.
    [72]Jordan D N,Smith W K.Simulated influence of leaf geometry on sunlight interception and photosynthesis in conifer needles.Tree Physiology,1993,13(1):29-39.
    [73]Germino M J,Smith W K.Differences in microsite,plant form,and low-temperature photoinhibition in alpine plants.Arctic,Antarctic,and Alpine Research,2000,32(4):388-396.
    [74]Johnson D M,Smith W K.Refugial forests of the southern Appalachians:photosynthesis and survival in current-year Abies fraseri seedlings.Tree Physiology,2005,25(11):1379-1387.
    [75]Ninot J M,Batllori E,Carrillo E,Carreras J,FerréA,Gutiérrez E.Timberline structure and limited tree recruitment in the Catalan Pyrenees.Plant Ecology&Diversity,2008,1(1):47-57.
    [76]Cierjacks A,Ruhr N K,Wesche K,Hensen I.Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador.Plant Ecology,2008,194(2):207-221.
    [77]Ball M C.The role of photoinhibition during tree seedling establishment at low temperatures//Photoinhibition of Photosynthesis:from Molecular Mechanisms to the Field.Oxford:BIOS Scientific Publishers,1994:365-376.
    [78]Ball M C,Egerton J J G,Leuning R,Cunningham R B,Dunne P.Microclimate above grass adversely affects spring growth of seedling snow gum(Eucalyptus pauciflora).Plant,Cell and Environment,1997,20(2):155-166.
    [79]Alvarez-Uria P,K9rner C.Low temperature limits of root growth in deciduous and evergreen temperate tree species.Functional Ecology,2007,21(2):211-218.
    [80]Bansal S,Germino M J.Variation in ecophysiological properties among conifers at an ecotonal boundary:comparison of establishing seedlings and established adults at timberline.Journal of Vegetation Science,2010,21(1):133-142.
    [81]Karlsson P S,Nordell K O.Effects of soil temperature on the nitrogen economy and growth of mountain birch seedlings near its presumed low temperature distribution limit.coscience,1996,3(2):183-189.
    [82]Weih M,Karlsson P S.The nitrogen economy of mountain birch seedlings:implications for winter survival.Journal of Ecology,1999,87(2):211-219.
    [83]Karlsson P S,Weih M.Soil temperatures near the distribution limit of the mountain birch(Betula pubescens ssp.czerepanovii):implications for seedling nitrogen economy and survival.Arctic,Antarctic,and Alpine Research,2001,33(1):88-92.
    [84]Smith D J.Frost-heave activity in the Mount Rae area,Canadian Rocky Mountains.Arctic and Alpine Research,1987,19(2):155-166.
    [85]Gill R A,Campbell C S,Karlinsey S M.Soil moisture controls Engelmann spruce(Picea engelmannii)seedling carbon balance and survivorship at timberline in Utah,USA.Canadian Journal of Forest Research,2015,45(12):1845-1852.
    [86]Gilfedder L.Factors influencing the maintenance of an inverted Eucalyptus coccifera tree-line on the Mt Wellington Plateau,Tasmania.Australian Journal of Ecology,1988,13(4):495-503.
    [87]Patten D T.Vegetational pattern in relation to environments in the Madison Range,Montana.Ecological Monographs,1963,33(4):375-405.
    [88]Fensham R J,Kirkpatrick J B.The eucalypt forest grassland/grassy woodland boundary in central Tasmania.Australian Journal of Botany,1992,40(2):123-138.
    [89]Schauer A J,Wade B K,Sowell J B.Persistence of subalpine forest-meadow ecotones in the Gunnison Basin,Colorado.The Great Basin Naturalist,1998,58(3):273-281.
    [90]Httenschwiler S,Smith W K.Seedling occurrence in alpine treeline conifers:a case study from the central Rocky Mountains,USA.Acta Oecologica,1999,20(3):219-224.
    [91]K9rner C,Larcher W.Plant life in cold climates.Symposia of the Society for Experimental Biology,1988,42:25-57.
    [92]Larcher W,Siegwolf R.Development of acute frost drought in Rhododendron ferrugineum at the alpine timberline.Oecologia,1985,67(2):298-300.
    [93]Hu J,Moore D J P,Burns S P,Monson R K.Longer growing seasons lead to less carbon sequestration by a subalpine forest.Global Change Biology,2010,16(2):771-783.
    [94]Sturges D L.Response of mountain big sagebrush to induced snow accumulation.Journal of Applied Ecology,1989,26(3):1035-1041.
    [95]Holtmeier F K,Broll G.The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge,Colorado Front Range,U.S.A.Arctic and Alpine Research,1992,24(3):216-228.
    [96]Pauker S J,Seastedt T R.Effects of mobile tree islands on soil carbon storage in tundra ecosystems.Ecology,1996,77(8):2563-2567.
    [97]Van Miegroet H,Hysell M T,Johnson A D.Soil microclimate and chemistry of spruce-fir tree islands in northern Utah.Soil Science Society of America Journal,2000,64(4):1515-1525.
    [98]Hadley J L,Smith W K.Influence of krummholz mat microclimate on needle physiology and survival.Oecologia,1987,73(1):82-90.
    [99]Scott P A,Hansell R I C,Erickson W R.Influences of wind and snow on Northern tree-lined environments at Churchill,Manitoba,Canada.Arctic,1993,46(4):316-323.
    [100]Hadley J L,Smith W K.Wind effects on needles of timberline conifers:seasonal influence on mortality.Ecology,1986,67(1):12-19.
    [101]Nilsen E T,Walker J F,Miller O K,Semones S W,Lei T T,Clinton B D.Inhibition of seedlings survival under Rhododendron maximum(Ericaceae):could allelopathy be a cause?.American Journal of Botany,1999,86(11):1597-1605.
    [102]Liang E,Wang Y F,Piao S L,Lu X M,Camarero J J,Zhu H F,Zhu L P,Ellison A M,Ciais P,Pe1uelas J.Species interactions slow warminginduced upward shifts of treelines on the Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America,2016,113(16):4380-4385.
    [103]Hughes N M,Johnson D M,Akhalkatsi M,Abdaladze O.Characterizing Betula litwinowii seedling microsites at the alpine-treeline ecotone,central greater Caucasus mountains,Georgia.Arctic,Antarctic,and Alpine Research,2009,41(1):112-118.
    [104]Lipp C C,Nilsen E T.The impact of subcanopy light environment on the hydraulic vulnerability of Rhododendron maximum to freeze-thaw cycles and drought.Plant,Cell and Environment,1997,20(10):1264-1272.
    [105]Lei T T,Semones S W,Walker J F,Clinton B D,Nilsen E T.Effects of Rhododendron maximum thickets on tree seed dispersal,seedling morphology,and survivorship.International Journal of Plant Science,2002,163(6):991-1000.
    [106]Castro J,Zamora R,Hódar J A,Gómez J M.Seedling establishment of a boreal tree species(Pinus sylvestris)at its southernmost distribution limit:consequences of being in a marginal Mediterranean habitat.Journal of Ecology,2004,92(2):266-277.
    [107]Maher E L,Germino M J,Hasselquist N J.Interactive effects of tree and herb cover on survivorship,physiology,and microclimate of conifer seedlings at the alpine tree-line ecotone.Canadian Journal of Forest Research,2005,35(3):567-574.
    [108]Coop J D,Givnish T J.Constraints on tree seedling establishment in montane grasslands of the Valles Caldera,New Mexico.Ecology,2008,89(4):1101-1111.
    [109]Christy E J,Sollins P,Trappe J M.First-year survival of Tsuga heterophylla without mycorrhizae and subsequent ectomycorrhizal development on decaying logs and mineral soil.Canadian Journal of Botany,1982,60(9):1601-1605.
    [110]Miller S L,Mc Clean T M,Stanton N L,William S E.Mycorrhization,physiognomy,and first-year survivability of conifer seedlings following natural fire in Grand Teton National Park.Canadian Journal of Forest Research,1998,28(1):115-122.
    [111]Hasselquist N,Germino M J,Mc Gonigle T,Smith W K.Variability of Cenococcum colonization and its ecophysiological significance for young conifers at alpine-treeline.New Phytologist,2005,165(3):867-873.
    [112]Cantor L F,Whitham T G.Importance of belowground herbivory:pocket gophers may limit aspen to rock outcrop refugia.Ecology,1989,70(4):962-970.
    [113]Hessl A E,Graumlich L J.Interactive effects of human activities,herbivory and fire on quaking aspen(Populus tremuloides)age structures in western Wyoming.Journal of Biogeography,2002,29(7):889-902.
    [114]Kaye M W,Stohlgren T J,Binkley D.Aspen structure and variability in Rocky Mountain National Park,Colorado,USA.Landscape Ecology,2003,18(6):591-603.
    [115]Cairns D M,Moen J.Herbivory influences tree lines.Journal of Ecology,2004,92(6):1019-1024.
    [116]Cierjacks A,Wesche K,Hensen I.Potential lateral expansion of Polylepis forest fragments in central Ecuador.Forest Ecology and Management,2007,242(2/3):477-486.
    [117]Tremblay G D,Boudreau S.Black spruce regeneration at the treeline ecotone:synergistic impacts of climate change and caribou activity.Canadian Journal of Forest Research,2011,41(3):460-468.
    [118]Danby R K,Hik D S.Responses of white spruce(Picea glauca)to experimental warming at a subarctic alpine treeline.Global Change Biology,2007,13(2):437-451.
    [119]Xu Z F,Hu T X,Zhang Y B.Effects of experimental warming on phenology,growth and gas exchange of treeline birch(Betula utilis)saplings,Eastern Tibetan Plateau,China.European Journal of Forest Research,2012,131(3):811-819.
    [120]Munier A,Hermanutz L,Jacobs J D,Lewis K.The interacting effects of temperature,ground disturbance,and herbivory on seedling establishment:implications for treeline advance with climate warming.Plant Ecology,2010,210(1):19-30.
    [121]Sierra-Almeida A,Cavieres L A.Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes.Oecologia,2010,163(1):267-276.
    [122]徐振锋,胡庭兴,张远彬,鲜骏仁,王开运.模拟增温引发的早春冻害:以岷江冷杉为例.生态学报,2009,29(11):6275-6280.
    [123]Easterling D R,Meehl G A,Parmesan C,Changnon S A,Karl T R,Mearns L O.Climate extremes:observations,modeling,and impacts.Science,2000,289(5487):2068-2074.
    [124]Jentsch A,Kreyling J,Beierkuhnlein C.A new generation of climate-change experiments:events,not trends.Frontiers in Ecology and the Environment,2007,5(7):365-374.
    [125]Inouye D W.The ecological and evolutionary significance of frost in the context of climate change.Ecology Letters,2000,3(5):457-463.
    [126]IPCC.Climate Change 2007-The Physical Science Basis:Working Group I Contribution to the Fourth Assessment Report of the IPCC.Cambridge,UK:Cambridge University,2007.
    [127]You Q L,Kang S C,Pepin N,Yan Y P.Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau,1961-2005.Geophysical Research Letters,2008,35(4):L04704.
    [128]Harsch M A,Bader M Y.Treeline form-a potential key to understanding treeline dynamics.Global Ecology and Biogeography,2011,20(4):582-596.
    [129]刘庆.林窗对长苞冷杉自然更新幼苗存活和生长的影响.植物生态学报,2004,28(2):204-209.
    [130]尹华军,程新颖,赖挺,林波,刘庆.川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究.植物生态学报,2011,35(1):35-44.
    [131]尹华军,刘庆.川西米亚罗亚高山云杉林种子雨和土壤种子库研究.植物生态学报,2005,29(1):108-115.
    [132]李庆梅,谢宗强,孙玉玲.秦岭冷杉幼苗适应性的研究.林业科学研究.2008,21(4):481-485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700