岩溶区不同恢复方式下土壤有机碳组分及酶活性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil organic carbon fraction and enzyme activities under different restoration methods in karst area
  • 作者:哈文秀 ; 周金星 ; 庞丹波 ; 关颖慧 ; 崔明
  • 英文作者:Ha Wenxiu;Zhou Jinxing;Pang Danbo;Guan Yinghui;Cui Ming;Jianshui Research Station,School of Soil and Water Conservation,Beijing Forestry University;Institute of Desertification Studies,Chinese Academy of Forestry;
  • 关键词:岩溶区 ; 植被恢复 ; 土壤有机碳 ; 土壤酶活性
  • 英文关键词:karst area;;vegetation restoration;;soil organic carbon;;soil enzyme activity
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:北京林业大学水土保持学院云南建水荒漠生态系统国家定位观测研究站;中国林业科学研究院荒漠化研究所;
  • 出版日期:2019-02-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划(2016YFC0502504);; 国家自然科学基金项目(41601279)
  • 语种:中文;
  • 页:BJLY201902001
  • 页数:11
  • CN:02
  • ISSN:11-1932/S
  • 分类号:5-15
摘要
【目的】植被的自然恢复和人工重建是加速岩溶生态系统修复、提高土壤质量的主要措施。研究岩溶区不同恢复方式下土壤有机碳组分及酶活性可揭示不同恢复方式对土壤质量的影响,旨在为岩溶区植被恢复模式的筛选和恢复的效果评价提供科学依据。【方法】以云南省建水县岩溶区自然恢复的天然次生林、人工恢复的云南松针叶林、桉树阔叶林为研究对象,分析不同土层的土壤有机碳组分、碳库管理指数和酶活性分布特征及其相关关系。【结果】各植被恢复方式下土壤有机碳(SOC)含量为9. 076~56. 855 g/kg,可溶性有机碳(DOC)含量为822. 311~1 175. 778 mg/kg,微生物量碳(MBC)含量为332. 933~2 035. 244 mg/kg,易氧化有机碳(EOC)含量为2. 381~6. 094g/kg。同一植被恢复方式下,除云南松林下的EOC含量外,各有机碳组分含量均随土层的加深而降低,局部土层深度出现波动。云南松林土壤亚表层(10~20 cm)的EOC含量显著高于表层(0~10 cm)和深层(20~30 cm)。不同植被恢复方式对DOC、EOC与SOC含量的影响大致均表现为:天然次生林>桉树林>云南松林,云南松林各土层的MBC含量始终显著高于桉树林。各有机碳组分与SOC均表现为极显著(P <0. 01)或显著(P <0. 05)正相关关系;不同植被恢复方式提升土壤碳库管理指数的能力大小为:天然次生林>桉树林>云南松林。SOC与CPI、CPMI呈极显著(P <0. 01)和显著(P <0. 05)正相关,EOC与CPAI、CPI、CPMI呈极显著(P <0. 01)或显著(P <0. 05)正相关。不同植被恢复方式通过增加土壤SOC、EOC等,从而提高了土壤碳库管理指数;整体上土壤酶活性随着土层的加深呈递减趋势,局部范围内有波动。不同植被恢复方式下土壤酶活性的变化不尽相同,过氧化氢酶和淀粉酶活性表现为天然次生林>云南松林>桉树林。各植被恢复方式下SOC、MBC、DOC、EOC含量与4种土壤酶活性均呈正相关关系,且多为显著或极显著水平。【结论】3种植被恢复措施在不同程度上提高了土壤各有机碳组分含量、碳库管理指数和土壤酶活性。其中,天然次生林对土壤整体质量的提升能力最高,桉树林在提升总有机碳及活性碳组分含量方面较为显著,而云南松林对过氧化氢酶和淀粉酶活性的提升能力更为显著。因此,应该加快岩溶区宜林土地管理方式的转变,优先考虑自然恢复,选择人工造林时要注重对阔叶树的利用和优化管理。
        [Objective]Natural restoration and artificial reconstruction of vegetation are the mainmeasures to accelerate the restoration of karst ecosystems and improve soil quality. Studying the soil organic carbon fraction and enzyme activities under different restoration patterns in karst area can reveal the effect of different restoration methods on soil quality,and aims to provide scientific basis for the screening of ecological restoration patterns and evaluation of restoration effects in karst areas. [Method]Based on the naturally restored secondary forest and artificially restored Pinus yunnanensis needle forest and Eucalyptus robusta broadleaved forest in Jianshui County,Yunnan Province of southwestern China,the soil organic carbon fraction,carbon pool management indexes and enzyme activity distribution characteristics and their correlations in different soil layers were analyzed. [Result]The soil organic carbon( SOC) content was 9. 076-56. 855 g/kg,the dissolved organic carbon( DOC) content was822. 311-1 175. 778 mg/kg,the microbial biomass carbon( MBC) content was 332. 933-2 035. 244 mg/kg,and the easy oxidation organic carbon( EOC) content was 2. 381-6. 094 g/kg. Under the same vegetation restoration mode,except for the content of EOC under the Pinus yunnanensis forest,the content of each organic carbon component decreased with the increase of soil depth,and the local soil depth fluctuated. The content of EOC in the subsurface( 10-20 cm) soil of Pinus yunnanensis was significantly higher than that in the surface layer( 0-10 cm) and deep layer( 20-30 cm). The impacts of different vegetation restoration methods on DOC,EOC and SOC contents were roughly as follows: natural secondary forest > Eucalyptus robusta forest > Pinus yunnanensis forest,and the MBC content of Pinus yunnanensis forest was always significantly higher than that in the Eucalyptus robusta forest. The organic carbon components and SOC showed very significantly( P < 0. 01) or significantly( P < 0. 05) positive correlations; the ability of different vegetation restoration methods to improve the soil carbon pool management indexes was: secondary forest > eucalypt forest > Pinus yunnanensis forest. SOC had very significant and significant correlations with CPI and CPMI,and EOC also had very significant( P <0. 01) or significant( P < 0. 05) correlations with CPAI,CPI,and CPMI. Each vegetation restoration method increased soil SOC,EOC,etc.,thereby increasing the soil carbon pool management indexes. As a whole,the soil enzyme activities decreased with the deepening of the soil layer,and there was fluctuation in the local range. Soil enzyme activities varied differently under different vegetation restoration methods. The activities of catalase and amylase were shown as secondary forest > Pinus yunnanensis forest > Eucalyptus robusta forest. The SOC,MBC,DOC,and EOC contents were positively correlated with the four soil enzyme activities under various vegetation restoration patterns,and most of them were significant or very significant. [Conclusion]The three vegetation restorations improved soil organic carbon fraction,carbon pool management indexes and soil enzyme activities to varying degrees.Among them,secondary forests have the highest ability to improve the overall soil quality. Eucalyptus robusta forests have a significant increase in the content of total organic carbon and active carbon components,while the Pinus yunnanensis forest has a significantly greater ability to increase the activities of catalase and amylase. Therefore,it is necessary to speed up the transformation of land management methods in suitable forest lands in karst areas and give priority to natural restoration,and pay attention to the utilization and optimization management of broadleaved trees when selecting artificial afforestation.
引文
[1]徐明岗,于荣,孙小凤,等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465.Xu M G,Yu R,Sun X F,et al. Effects of long term fertilization on labile organic matter and carbon management index(CMI)of the typical soils of China[J]. Plant Nutrition and Fertilizer Science,2006,12(4):459-465.
    [2]刘学东,陈林,杨新国,等.荒漠草原典型植物群落土壤活性有机碳组分特征及其与酶活性的关系[J].西北植物学报,2016,36(9):1882--1890.Liu X D,Chen L,Yang X G,et al. Characteristics of soil labile organic carbon fractions and their relationship with soil enzyme activities in four typical communities in desert steppe[J]. Acta Botanica Boreali-Occidentalia Sinica,2016,36(9):1882-1890.
    [3] Lefroy R D B,Blair G J,Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and13C natural isotope abundance[J]. Plant&Soil,1993,155--156(1):399-402.
    [4]孙萌,刘洋,李寒,等.有机物覆盖对核桃园土壤有机碳库及酶活性的影响[J].植物营养与肥料学报,2018,24(1):270-278.Sun M,Liu Y,Li H,et al. Effects of organic mulching on soil organic carbon pool and soil enzyme activity in walnut orchard[J].Plant Nutrition and Fertilizer Science,2018,24(1):270-278.
    [5]杜满义,范少辉,刘广路,等.土地利用方式转变对赣中地区土壤活性有机碳的影响[J].应用生态学报,2013,24(10):2897--2904.Du M Y,Fan S H,Liu G L,et al. Effects of land use change on soil labile organic carbon in central Jiangxi of China[J]. Chinese Journal of Applied Ecology,2013,24(10):2897--2904.
    [6]张娇阳,梁楚涛,董昌平,等.黄土丘陵区不同土地利用下土壤碳组分及碳库管理指数特征[J].水土保持研究,2016,23(4):66--69,76.Zhang J Y,Liang C T,Dong C P,et al. Characteristics of soil carbon components and carbon pool management in different land uses in loess hilly region[J]. Research of Soil and Water Conservation,2016,23(4):66--69,76.
    [7] Templer P H,Groffman P M,Flecker A S,et al. Land use change and soil nutrient transformations in the Los Haitises Region of the Dominican Republic[J]. Soil Biology&Biochemistry,2005,37(2):215--225.
    [8]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570.Yang W Q,Wang K Y. Advances on soil enzymology[J]. Chinese Journal of Applied and Environmental Biology,2002,8(5):564-570.
    [9]万忠梅,宋长春,杨桂生,等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报,2009,29(2):406--412.Wan Z M,Song C C,Yang G S,et al. The active soil organic carbon fraction and its relationship with soil enzyme activity in different types of marshes in the Sanjiang Plain[J]. Acta Scientiae Circumstantiae,2009,29(2):406-412.
    [10]袁道先.中国岩溶动力系统[M].北京:地质出版社,2002.Yuan D X. Karst dynamic system in China[M]. Beijing:Geological Publishing House,2002.
    [11]唐夫凯,周金星,崔明,等.典型岩溶区不同退耕还林地对土壤有机碳和氮素积累的影响[J].北京林业大学学报,2014,36(2):44-50.Tang F K,Zhou J X,Cui M,et al. Effects of different returning farmland to forestlands on accumulation of soil organic carbon and nitrogen in typicalkarst area of southwestern China[J]. Journal of Beijing Forestry University,2014,36(2):44-50.
    [12]陈高起,傅瓦利,沈艳,等.岩溶区不同土地利用方式对土壤有机碳及其组分的影响[J].水土保持学报,2015,29(3):123--129.Chen G Q,Fu W L,Shen Y,et al. Effects of land use types on soil organic carbon and its fraction in karst area[J]. Journal of Soil and Water Conversation,2015,29(3):123-129.
    [13]张亚杰,钱慧慧,李伏生,等.不同土地管理和利用方式喀斯特坡地养分和碳库管理指数的差异[J].中国岩溶,2016,35(1):27-35.Zhang Y J,Qian H H,Li F S,et al. Differences in soil nutrient and carbon pool management index under different land management and utilization modes in karst slope region[J].Carsologica Sinica,2016,35(1):27--35.
    [14]刘晓,黄林,郭康莉,等.施用无害化污泥影响土壤碳库组分和碳库管理指数的演变[J].环境科学,2017,38(3):1218-1226.Liu X,Huang L,Guo K L,et al. Influence of the application of non-hazardous sewage sludge on the evolution of soil carbon pool and carbon pool management index[J]. Acta Scientiae Circumstantiae,2017,38(3):1218-1226.
    [15]张瑞,张贵龙,姬艳艳,等.不同施肥措施对土壤活性有机碳的影响[J].环境科学,2013,34(1):277-282.Zhang R,Zhang G L,Ji Y Y,et al. Effects of different fertilizer application on soil active organic carbon[J]. Acta Scientiae Circumstantiae,2013,34(1):277-282.
    [16] Mclatchey G P, Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil[J]. Journal of Environmental Quality,1998,27(5):1268-1274.
    [17]杨兰芳,曾巧,李海波,等.紫外分光光度法测定土壤过氧化氢酶活性[J].土壤通报,2011,42(1):207--210.Yang L F,Zeng Q,Li H B,et al. Measurement of catalase activity in soil by ultraviolet spectrophotometry[J]. Chinese Journal of Soil Science,2011,42(1):207-210.
    [18]关松荫,孟昭鹏.不同垦殖年限黑土农化性状与酶活性的变化[J].土壤通报,1986,4(4):157--159.Guan S Y,Meng Z P. Changes of agro chemical properties and enzyme activities in black soil under different reclamation years[J]. Chinese Journal of Soil Science,1986,4(4):157--159.
    [19]关松荫,沈桂琴,孟昭鹏,等.我国主要土壤剖面酶活性状况[J].土壤学报,1984,21(4):368--381.Guan S Y,Shen G Q,Meng Z P,et al. Enzyme activity in the main soil profiles in China[J]. Chinese Journal of Soil Science,1984,21(4):368-381.
    [20]董扬红,曾全超,李娅芸,等.黄土高原不同植被类型土壤活性有机碳组分分布特征[J].草地学报,2015,23(2):277-284.Dong Y H,Zeng Q C,Li Y Y,et al. The characteristics of soil active organic carbon composition under different vegetation types on the Loess Plateau[J]. Acta Agrestia Sinica,2015,23(2):277-284.
    [21]苗娟,周传艳,李世杰,等.不同林龄云南松林土壤有机碳和全氮积累特征[J].应用生态学报,2014,25(3):625--631.Miao J,Zhou C Y,Li S J,et al. Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at differentage stages[J]. Chinese Journal of Applied Ecology,2014,25(3):625--631.
    [22]范志平,胡亚林,黎锦涛,等.干湿交替对半干旱区沙地樟子松人工林土壤C和N矿化速率影响[J].生态学杂志,2015,34(12):3360-3367.Fan Z P,Hu Y L,Li J T,et al. Effects of drying-rewetting on soil C and N mineralization rates in Pinus sylvestris var. mongolica plantation in a semi-arid region[J]. Chinese Journal of Ecology,2015,34(12):3360--3367.
    [23] Zou X M,Ruan H H,Fu Y,et al. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigationincubation procedure[J]. Soil Biology&Biochemistry,2005,37(10):1923-1928.
    [24]邓坤枚,罗天祥,张林,等.云南松林的根系生物量及其分布规律的研究[J].应用生态学报,2005,16(1):21-24.Deng K M,Luo T X,Zhang L,et al. Root biomass of different standage Pinus yunnanensis forests and its distribution pattern in different soil depths[J]. Chinese Journal of Applied Ecology,2005,16(1):21-24.
    [25]胡宁,马志敏,蓝家程,等.石漠化山地植被恢复过程土壤团聚体氮分布及与氮素矿化关系研究[J].环境科学,2015,36(9):3411--3421.Hu N,Ma Z M,Lan J C,et al. Nitrogen fraction distributions and impacts on soil nitrogen mineralization in different vegetation restorations of karst rocky desertification[J]. Acta Scientiae Circumstantiae,2015,36(9):3411-3421.
    [26] Qi R,Li J,Lin Z,et al. Temperature effects on soil organic carbon,soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes[J]. Applied Soil Ecology,2016,102:36-45.
    [27]王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513-519.Wang Q K,Wang S L,Fen Z W,et al. Active soil organic matter and its relationship with soil quality[J]. Acta Ecologica Sinica,2005,25(3):513--519.
    [28]王棣.秦岭典型林分土壤有机碳组分及其分布特征[D].杨凌:西北农林科技大学,2015.Wang D. The variation of distribution characteristics and major fractions of soil organic carbon under different forest types in the Qinling mountains[D]. Yangling:Northwest Agriculture and Forestry University,2015.
    [29] Blair G J,Lefroy R,Lisle L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research,1995,46(7):393-406.
    [30]邱莉萍,张兴昌,程积民.不同封育年限草地土壤有机质组分及其碳库管理指数[J].植物营养与肥料学报,2011,17(5):1166--1171.Qiu L P,Zhang X C,Cheng J M,et al. Soil organic matter fractions and soil carbon management index in grasslands with different fencing ages[J]. Plant Nutrition and Fertilizer Science,2011,17(5):1166--1171.
    [31]唐国勇,李昆,孙永玉,等.干热河谷不同利用方式下土壤活性有机碳含量及其分配特征[J].环境科学,2010,31(5):1365--1371.Tang G Y,Li K,Sun Y Y,et al. Soil labile organic carbon contents and their allocation characteristics under different land uses at dry-hot valley[J]. Environmental Science,2010,31(5):1365--1371.
    [32]姜勇,梁文举,闻大中.免耕对农田土壤生物学特性的影响[J].土壤通报,2004,35(3):347-351.Jiang Y,Liang W J,Wen D Z. Effects of no-tillage on soil biological properties in farmlands:a review[J]. Chinese Journal of Soil Science,2004,35(3):347--351.
    [33]叶协锋,杨超,李正,等.绿肥对植烟土壤酶活性及土壤肥力的影响[J].植物营养与肥料学报,2013,19(2):445--454.Ye X F, Yang C, Li Z, et al. Effects of green manure in corporation on soil enzyme activities and fertility in tobaccoplanting soils[J]. Plant Nutrition and Fertilizer Science,2013,19(2):445-454.
    [34]万忠梅,宋长春.小叶章湿地土壤酶活性分布特征及其与活性有机碳表征指标的关系[J].湿地科学,2008,6(2):249-257.Wan Z M,Song C C. Vertical dynamics of soil enzyme activities and its relationship with active organic carbon indicators in Deyeuxia angustifolia wetland[J]. Wetland Science,2008,6(2):249--257.
    [35]南丽丽,郭全恩,曹诗瑜,等.疏勒河流域不同植被类型土壤酶活性动态变化[J].干旱地区农业研究,2014,32(1):134-139.Nan L L,Guo Q E,Cao S Y,et al. Dynamic changes of soil enzyme activities of different vegetation types in Shulehe River Basin,China[J]. Agricultural Research in the Arid Areas,2014,32(1):134-139.
    [36]杨文英,邵学新,梁威,等.杭州湾湿地土壤酶活性分布特征及其与活性有机碳组分的关系[J].湿地科学与管理,2011,7(2):54-58.Yang W Y, Shao X X, Liang W, et al. Activities and its relationship with active organic carbon fractions in Hangzhou Bay[J]. Wetland Science&Management,2011,7(2):54--58.
    [37] Brockman F J, Murray C J. Subsurface microbiological heterogeneity:current knowledge, descriptive approaches and applications[J]. Fems Microbiology Reviews,1997,20(3--4):231-247.
    [38]张仕艳,原海红,陆梅,等.滇西北不同利用类型土壤酶活性及其与理化性质与微生物的关系[J].亚热带水土保持,2010,22(2):13-16.Zhang S Y,Yuan H H,Lu M,et al. The soil enzyme activities of different land use types and the relationship between the soil enzyme activities and physical-chemical properties or microorganism in mountains area of northwest Yunnan Province[J]. Subtropical Soil and Water Conversation,2010,22(2):13--16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700