土壤可溶性氮及氮代谢酶活性动态变化及对温度的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Content of Soluble Nitrogen and Activities of Nitrogen Metabolism Enzymes in Soil in Response to Temperature Changes
  • 作者:钟珍梅 ; 杨庆 ; 翁伯琦 ; 邢世和 ; 黄秀声 ; 陈志彤
  • 英文作者:ZHONG Zhen-mei;YANG Qing;WENG Bo-qi;XING Shi-he;HUANG Xiu-sheng;CHEN Zhi-tong;Agricultural Ecological Institute,Fujian Academy of Agricultural Sciences;Fujian Engineering and Technology Research Center for Hilly Prataculture,Fuzhou,Fujian 350003,China;College of Resource and Environmental Science,Fujian Agriculture and Forestry University;
  • 关键词:NO_3~--N ; NH_4~+-N ; SON ; 脲酶 ; 蛋白酶 ; 酰胺酶
  • 英文关键词:nitrate;;ammonium;;soluble organic nitrogen;;urease;;protease;;lactamase
  • 中文刊名:FJNX
  • 英文刊名:Fujian Journal of Agricultural Sciences
  • 机构:福建省农业科学院农业生态研究所;福建省丘陵地区循环农业工程技术研究中心;福建农林大学资源环境学院;
  • 出版日期:2017-05-15
  • 出版单位:福建农业学报
  • 年:2017
  • 期:v.32;No.162
  • 基金:福建省科技计划项目——省属公益类科研院所基本科研专项(2015R1017-2、2016R1016-2、2015R1017-1);; 福建省农业科学院青年人才创新基金项目(YC2016-12)
  • 语种:中文;
  • 页:FJNX201705015
  • 页数:7
  • CN:05
  • ISSN:35-1195/S
  • 分类号:79-85
摘要
采用室内恒湿培养试验探讨土壤可溶性氮及氮代谢酶活性的动态变化规律及温度对土壤可溶性氮及氮代谢酶活性的影响。结果表明,土壤NO_3~--N含量呈先增加后降低的趋势,在培养48~58d达到最大值;NH+4-N含量呈降低趋势,培养73d后趋于稳定;SON和TSN含量呈"升高-降低-升高-降低"的波浪形变化趋势,在48d时累积量达到最大值。土壤NO_3~--N含量随培养温度升高显著增加,并与之达到极显著正相关;土壤NH_4~+-N则显著降低,与培养温度之间显著负相关;培养中期及培养后期部分取样时间内,土壤SON与培养温度显著相关,其他取样时间均无显著相关性。随着培养时间的延长,土壤脲酶活性呈"升-降-升-降"的抛物线动态变化趋势;土壤蛋白酶活性表现为培养前期、中期高于培养后期;土壤天冬酰胺酶活性呈折线上升后下降的变化规律;土壤天谷氨酰胺酶活性呈折线上升的变化趋势。从培养温度看,在本研究设定的温度范围内,土壤温度的变化对脲酶活性无显著影响,但在部分取样时间内对蛋白酶、天冬酰胺酶和谷氨酰胺酶活性有显著影响。
        The dynamic changes on the soluble nitrogen pool and nitrogen metabolism enzymes in soil as the environmental temperature was altered in a humidity-controlled incubation chamber were studied.The results showed that(a)the NO_3~--N in soil increased within 58 dafter cultivation,and peaked between 48 th and 58 th d followed by a continuous decline;while NH+4-N decreased initially and stabilized after 73 d,and SON fluctuated with a maximum on the 48 th d;(b)NO_3~--N increased upon increasing temperature with a significant correlation,but NH_4~+-N had an opposite trend with a significant inverse correlation with the temperature;whereas,SON significantly correlated with the increasing temperature only in the mid-and late-stages;and,(c)the urease activity fluctuated during the entire incubation;the protease activity was higher in the initial and mid-than the late stage;the activity of asparagine enzyme increased initially but declined afterward,while that of the glutaminase enzyme increased continuously in the course of the test;and,within the testing range,the temperature induced little effect on the urease activity,but significantly affected the protease,asparaginase and glutaminase in a certain sampling times.
引文
[1]VAN KESSEL C,CLOUGH T,VAN GROENIGEN J W.Dissolved organic nitrogen:an overlooked pathway of nitrogen loss from agricultural systems[J].Journal of Environmental Quality,2009,38:393-401.
    [2]CANFIELD D E,GLAZER A N,FALKOWSKI P G.The Evolution and Future of Earth′s Nitrogen Cycle[J].Science,2010,330:191-196.
    [3]N SHOLM T,KIELLAND K,GANETEG U.Uptake of organic nitrogen by plants[J].New Phytologist,2009,182:31-48.
    [4]GEISSELER D,HORWATH W R,jOERGENSEN R G,et al.Pathways of nitrogen utilization by soil microorganisms,A review[J].Soil Biology&Biochemistry,2010,42:2058-2067.
    [5]SERREZE M C,WALSH J E,CHAPIN F S,et al.Observational evidence of recent change in the northern high latitude environment[J].Climatic Change,2000.46:159-207.
    [6]SHAVER G R,CHAPIN F S.Effect of fertilizer on production and biomass of tussock tundra,Alaska,USA[J].Arctic and Alpine Research,1986,18:261-268.
    [7]王一.模拟土壤增温和林内减雨对暖温带锐齿栎林土壤呼吸的影响及其微生物的响应[D].北京:中国林业科学研究院,2015.
    [8]MCDOWELL W H,CURRIE W S,AHER J D,et al.Effects of Chronic Nitrogen Amendments on Production of Dissolved Organic Carbon and Nitrogen in Forest Soils[C]//Biogeochemical Investigations at Watershed,Landscape,and Regional Scales.Springer Netherlands,1998,105:175-182.
    [9]HUANG W Z,SCHOENAU J J.Fluxes of water-soluble nitrogen and phosphorus in the forest floor and surface mineral soil of a boreal aspen stand[J].Geoderma,1998,81:251-264.
    [10]FARRELL M,HILL P W,FARRAR John,et al.Seasonal variation in soluble soil carbon and nitrogen across a grassland productivity gradient[J].Soil Biology&Biochemistry,2011,43:835-844.
    [11]CONANT R T,RYAN M G,GREN G RAN I,et al.Temperature and soil organic matter decomposition rates synthesis of current knowledge and a way forward[J].Global Change Biology,2011,17:3392-3404.
    [12]CUSACK D F,TORN M S,MCDOWELL W H,et al.The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils[J].Global Change Biology,2010,16:2555-2572.
    [13]WALLENSTEIN M D,MCMAHON S K,SCHIMEL J P.Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils[J].Global Change Biology,2009,(15):1631-1639.
    [14]熊莉,徐振锋,吴福忠,等.雪被斑块对川西亚高山冷杉林土壤氮转化酶活性的影响[J].应用生态学报,2014,25(5):1293-1299.
    [15]陈书涛,桑琳,张旭,等.增温及秸秆施用对冬小麦田土壤呼吸和酶活性的影响[J].环境科学,2016.37(2):703-709.
    [16]程冬冬,赵贵哲,刘亚青,等.土壤温度、土壤含水量对高分子缓释肥养分释放及土壤酶活性的影响[J].水土保持学报,2013,27(6):216-221.
    [17]秦纪洪,张文宣,王琴,等.亚高山森林土壤酶活性的温度敏感性特征[J].土壤学报,2013,50(6):1241-1245.
    [18]杨玉莲,吴福忠,杨万勤,等.雪被去除对川西高山冷杉林冬季土壤水解酶活性的影响[J].生态学报,2012,32(22):7045-7052.
    [19]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2000.
    [20]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986:273-340.
    [21]林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010:73.
    [22]袁巧霞,武雅娟,艾平,等.温室土壤硝态氮积累的温度、水分、施氮量耦合效应[J].农业工程学报,2007,23(10):192-198.
    [23]周建斌,陈竹君,郑险峰.土壤可溶性有机氮及其在氮素供应及转化中的作用[J].土壤通报,2005,36(2):244-247.
    [24]HANNAM K D,PRESCOTT C E.Soluble organic nitrogen in forests and adjacent clear cuts in British Columbia.Canada[J].Canadian Journal of Forest Research,2003,33:1709-1718.
    [25]ROS G H,HOFFLAND E,VAN KESSEL C,et al.Temminghoff.Extractable and dissolved soil organic nitrogenA quantitative assessment[J].Soil Biology&Biochemistry,2009,(41):1029-1039.
    [26]FARRELL M,PRENDERGAST-MILLER M,JONES D L,et al.Soil microbial organic nitrogen uptake is regulated by carbon Availability[J].Soil Biology&Biochemistry,2014,77:261-267.
    [27]LIPSON D A,SCHMIDT S K.Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains[J].Applied&Environmental Microbiology,2004,70:2867-2879.
    [28]张树兰,杨学云,吕殿青,等.温度、水分及不同氮源对土壤硝化作用的影响[J].生态学报,2002,22(12):2147-2153.
    [29]郎漫,李平,张小川.土地利用方式和培养温度对土壤氮转化及温室气体排放的影响[J].应用生态学报,2012,23(10):2670-2676.
    [30]DAVIDSONAND E A.JANSSENS I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J].Nature,2006,440:165-173.
    [31]BRZOSTEK E R,FINZI A C.Substrate supply,fine roots,and temperature control proteolytic enzyme activity in temperate forest soils[J].Ecology,2011,92(4):892-902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700