超声活化过硫酸盐氧化降解水溶液中的全氟辛烷磺酸盐
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Oxidative degradation of perfluorooctane sulfonate by a sono-activated persulfate system in an aqueous solution
  • 作者:李炳智 ; 朱江
  • 英文作者:LI Bing-zhi;ZHU Jiang;Shanghai Academy of Environmental Sciences;
  • 关键词:全氟辛烷磺酸盐 ; 超声活化 ; 过硫酸盐 ; 动力学特征 ; 降解机理
  • 英文关键词:perfluorooctane sulfonate(PFOS);;sono-activated;;persulfate;;kinetic characteristics;;degradation mechanism
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:上海市环境科学研究院;
  • 出版日期:2019-04-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.284
  • 基金:国家自然科学基金项目(41303095);; 上海市自然科学基金项目(17ZR1424000,16ZR1429700);; 上海市环科院青创基金项目(CX201601)~~
  • 语种:中文;
  • 页:NHBH201904023
  • 页数:9
  • CN:04
  • ISSN:12-1347/S
  • 分类号:198-206
摘要
针对全氟辛烷磺酸盐(PFOS)去除,构建了超声活化过硫酸盐氧化体系。考察了体系中超声频率、过硫酸盐浓度、溶液初始pH值和空化气体等因素对PFOS降解速率的影响,并对PFOS降解过程产生的自由基及其降解中间产物进行了捕捉和鉴定。结果表明:在30℃、pH值7.0、过硫酸盐浓度0.93 mmol·L~(-1)、超声频率400 kHz、功率100 W和超声密度2.67 W·cm-2条件下,18.58μmol·L~(-1)的PFOS经过8 h反应,降解率达到99.5%。超声活化过硫酸盐体系表现出显著的协同效应,PFOS降解速率比单独超声和单独过硫酸盐体系降解速率之和提高4.77倍,其表观准一级反应动力学常数在实验范围内随超声频率增加而增大,随过硫酸盐浓度增加先增后减,随溶液初始pH值增加而减小,四种空化气体中以氩气的降解效果为最佳;电子自旋捕捉试验表明,硫酸根自由基和羟基自由基参与了PFOS的降解。根据超高效液相色谱-质谱(UPLC-MS)分析得到的七种降解产物,给出了PFOS在该体系中可能的降解途径。
        A sono-activated persulfate oxidative system was built to remove typical perfluorooctane sulfonate(PFOS). The effects of ultrasonic frequency, persulfate concentration, initial pH value, and the cavitation gas of the system on PFOS degradation rates were studied.The generated radicals and degradation intermediates of PFOS in this process were also captured and identified. The results indicated that99.5% of 18.58 μmol·L~(-1) PFOS was degraded under a reaction temperature of 30 ℃, pH of 7.0, persulfate concentration of 0.93 mmol·L~(-1),ultrasonic frequency of 400 kHz, power of 100 W, ultrasonic density of 2.67 W·cm-2, and reaction time of 8 h. The PFOS degradation rate of the sono-activated persulfate system was 4.77 times higher than that of the single ultrasound and persulfate systems, which suggested a notable synergic effect. Further investigation also demonstrated that the apparent pseudo-first-order rate constants tended to increase with both the increase in ultrasonic frequency from 20 to 400 kHz and persulfate concentration from 18.58 to 930.0 μmol·L~(-1), but decreased with both the increase in the initial pH values from 3.00 to 11.03 and with the order of cavitation gases as argon, oxygen, nitrogen, and air.Electron spin trapping experiments showed that sulfate and hydroxyl radicals were involved in PFOS degradation. According to the seven types of degradation intermediates detected by UPLC-MS analysis, a tentative PFOS degradation pathway was proposed.
引文
[1]环境保护部和国土资源部.全国土壤污染状况调查公报[R].索引号:000014672/2014-00351, 2014.The Ministry of Environmental Protection and and The Ministry of Land and Resources. Report on the national soil contamination survey[R]. Index number:000014672/2014-00351, 2014.
    [2] Chen S, Jiao X C, Gai N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 2016, 211:124-131.
    [3]祝凌燕,林加华.全氟辛酸的污染状况及环境行为研究进展[J].应用生态学报, 2008, 19(5):1149-1157.ZHU Ling-yan, LIN Jia-hua. Pollution trend and environmental behavior of perfluoroocatanoic acid:A review[J]. Chinese Journal of Applied Ecology, 2008, 19(5):1149-1157.
    [4]鲍佳.典型水体沉积物与点源周边环境的全氟烷酸类化合物污染现状及趋势研究[D].大连:大连理工大学, 2010.BAO Jia. Research on perfluoroalkyl acid(PFAA)contaminants status and trend in the sediments of typical water bodies and the environment around a point source[D]. Dalian:Dalian University of Technology,2010.
    [5]汪磊,张彰,张宪忠,等.污水处理厂中全氟化合物的污染研究[J].环境科学学报, 2011, 31(7):1363-1368.WANG Lei, ZHANG Zhang, ZHANG Xian-zhong, et al. Removal of perfluorinated compounds by wastewater treatment plants[J]. Acta Scientiae Circumstantiae, 2011, 31(7):1363-1368.
    [6] He X, Dai K, Li A, et al. Occurrence and assessment of perfluorianted compounds in fish from the Danjiangkou reservoir and Hanjiang river in China[J]. Food Chemistry, 2015, 174:180-187.
    [7] Alves A, Jacobs G, Vanermen G, et al. New approach for assessing human perfluoroalkyl exposure via hair[J]. Talanta, 2015, 144:574-583.
    [8] Carloni D. Perfluorooctane sulfonate(PFOS)production and use:Past and current evidence[R/OL]. https://www. onudi. org. ar/fileadmin/user_media/Services/Environmental_Management/Stockholm_Convention/POPs/DC_Perfluorooctane%20Sulfonate%20Report.
    [9]杨兰琴,冯雷雨,陈银广.中国水环境中全氟化合物的污染水平及控制策略[J].化工进展, 2012, 31(10):2304-2312.YANG Lan-qin, FENG Lei-yu, CHEN Yin-guang. Pollution status and control strategies of perfluorinated compounds in water environments over China:A review[J]. Chemical Industry and Engineering Progress, 2012, 31(10):2304-2312.
    [10]吕永龙,王佩,谢双蔚,等.新兴产业发展与新型污染物的排放和污染控制-以全氟辛烷磺酸(PFOS)类新型污染物为例[C].第十五届中国科协年会第24分会场, 2013.LüYong-long, WANG Pei, XIE Shuang-wei, et al. Emerging industry development and emissions of emerging pollutants such as PFOS[C]. The 24th Branch of the Fifteenth Annual Meeting of Chinese Association for Science and Technology, 2013.
    [11]江敏,袁璐瑶.全氟辛烷磺酸(PFOS)的环境污染及生态毒性研究进展[J].安全与环境学报, 2014, 14(4):207-212.JIANG Min, YUAN Lu-yao. Research advances on the environmental pollution and ecological toxic harm of the perfluorooctane sulfonate(PFOS)[J]. Journal of Safety and Environment, 2014, 14(4):207-212.
    [12] Nakata H, Kannan K, Nasu T, et al. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan:Environmental fate of perfluorooctane sulfonate in aquatic ecosystems[J]. Environmental Science&Technology, 2006, 40(16):4916-4921.
    [13] Liu J, Avendano S M. Microbial degradation of polyfluoroalkyl chemicals in the environment:A review[J]. Environment International, 2013,61(4):98-114.
    [14] Lin A Y C, Panchangam S C, Ciou P S. High levels of perfluorochemicals in Taiwan’s wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems[J]. Chemosphere, 2010, 80(10):1167-1174.
    [15] Merino N, Qu Y, Deeb R A, et al. Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water[J]. Environmental Engineering Science, 2016, 33(9):615-649.
    [16] Trojanowicz M, Bojanowska-Czajka A, Bartosiewicz I, et al. Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate(PFOA)and perflurorooctanesulfonate(PFOS):A review of recent advances[J]. Chemical Engineering Journal, 2018, 336:170-199.
    [17]李炳智,朱江. 1, 1, 1-三氯乙烷和1, 4-二恶烷复合污染地下水的超声协同降解研究[J].农业环境科学学报, 2015, 34(11):2183-2189.LI Bing-zhi, ZHU Jiang. Degradation of 1, 1, 1-trichloroethane and1, 4-dioxane co-existed in groundwater by ultrasonics-oxidant systems[J]. Journal of Agro-Environment Science, 2015, 34(11):2183-2189.
    [18] Li B, Zhu J. Simultaneous degradation of 1, 1, 1-trichloroethane and solvent stabilizer 1, 4-dioxane by a sono-activated persulfate process[J]. Chemical Engineering Journal, 2016, 284:750-763.
    [19] Ye M M, Chen Z L, Liu X W, et al. Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzene[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):1021-1027.
    [20] Furman O S, Teel A L, Watts R J. Mechanism of base activation of persulfate[J]. Environmental Science&Technology, 2010, 44(16):6423-6428.
    [21] Yang S, Cheng J, Sun J, et al. Defluorination of aqueous perfluorooctane-sulfonate by activated persulfate oxidation[J]. PLoS One, 2013, 8(10):e74877.
    [22] Moriwaki H, Takagi Y, Tanaka M, et al. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid[J]. Environmental Science&Technology, 2005, 39(9):3388-3392.
    [23] Vecitis C D, Park H, Cheng J, et al. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorianted surfactants perfluorooctanoate(PFOA), and perfluorooctane sulfonate(PFOS)into inorganic products[J]. Journal of Physical Chemistry A, 2008, 112(18):4261-4270.
    [24] Thompsonm L H, Doraiswamy L K. Sonochemistry:Science and engineering[J]. Industrial&Engineering Chemistry Research, 1999, 38(4):1215–1249.
    [25] Pétrier C, Francony A. Ultrasonic waste-water treatment:Incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J]. Ultrasonics Sonochemistry, 1997, 4(4):295–300.
    [26] Ji Y, Ferronato C, Salvador A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate:Implications for remediation of groundwater contaminated by antibiotics[J]. Science of the Total Environment, 2014, 472(10):800-808.
    [27] Criquet J, Leitner N K V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis[J]. Chemosphere, 2009, 77(2):194-200.
    [28] Liang C, Wang Z S, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1):106-113.
    [29] Huie R E, Clifton C L, Kafafi S A. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4-:Experimental and theoretical results for cyclic ethers[J]. The Journal of Physical Chemistry,1991, 95(23):9336-9340.
    [30] Bletrán F J, González M, Acedo B J, et al. Contribution of free radical oxidation to eliminate volatile organochlorine compounds in water by ultraviolet radiation and hydrogen peroxide[J]. Chemosphere, 1996, 32(10):1949-1961.
    [31] Getoff N. Advancements of radiation induced degradation of pollutants in drinking and waste water[J]. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 1989, 40(7):585-594.
    [32] Drzewicz P, Perez-Estrada L, Alpatova A, et al. Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water[J]. Environmental Science&Technology, 2012, 46(16):8984-8991.
    [33] Shih Y J, Putra W N, Huang Y H, et al. Mineralization and deflourization of 2, 2, 3, 3-tetrafluoro-1-propanol(TFP)by UV/persulfate oxidation and sequential adsorption[J]. Chemosphere, 2012, 89(10):1262-1266.
    [34] Moghaddam S K, Rasoulifard M, Vahedpour M, et al. Removal of tylosin from aqueous solution by UV/nano Ag/S2O82-process:Influence of operational parameters and kinetic study[J]. Korean Journal of Chemical Engineering, 2014, 31(9):1577-1581.
    [35] González-García J, Sáez V, Tudela I, et al. Sonochemical treatment of water polluted by chlorinated organocompounds:A review[J]. Water,2010, 2(1):28-74.
    [36] Yoo Y E. Character of volatile fatty acids degradation in aqueous solution by the action of ultrasound[J]. Water Research, 1997, 31(6):532-536.
    [37]马军,赵雷.超声波降解水中有机物的影响因素[J].黑龙江大学自然科学学报, 2005, 22(2):141-149.MA Jun, ZHAO Lei. Influencing factors on ultrasonic degradation of organic compound in water[J]. Journal of Natural Science of Heilongjiang University, 2005, 22(2):141-149.
    [38] Moriwaki H, Takagi Y, Tanaka M, et al. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid[J]. Environmental Science&Technology, 2005, 39(9):3388-3392.
    [39] Yang S, Cheng J, Sun J, et al. Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation[J]. PLoS One, 2013, 8(10):1-10.
    [40] Roshani B, Leitner N K. The influence of persulfate addition for the degradation of micropollutants by ionizing radiation[J]. Chemical Engineering Journal, 2011, 168(2):784–789.
    [41] Vecitis C D, Park H, Cheng J, et al. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorianted surfactants perfluorooctanoate(PFOA), and perfluorooctane sulfonate(PFOS)into inorganic products[J]. Journal of Physical Chemistry A, 2008, 112(18):4261-4270.
    [42] Zareitalabad P, Siemens J, Hamer M, et al. Perfluorooctanoic acid(PFOA)and perfluorooctanesulfonic acid(PFOS)in surface waters,sediments, soils and wastewater:A review on concentrations and distribution coefficients[J]. Chemosphere, 2013, 91(6):725-732.
    [43] Zushi Y, Hogarth J N, Masunaga S. Progress and perspective of perfluorinated compound risk assessment and management in various countries and institutes[J]. Clean Technologies&Environmental Policy,2012, 14(1):9-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700