抽穗期灌溉缓解水稻高温热害的微气象学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Micrometeorological Analysis of Heat Stress Relieve by Irrigation in Rice at Heading Stage
  • 作者:江晓东 ; 华梦飞 ; 胡凝 ; 杨沈斌 ; 郭建茂
  • 英文作者:JIANG Xiao-dong;HUA Meng-fei;HU Ning;YANG Shen-bin;GUO Jian-mao;Jiangsu Key Laboratory of Agricultural Meteorology/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology;
  • 关键词:水稻 ; 高温热害 ; 灌溉 ; 温度 ; 能量平衡
  • 英文关键词:rice;;heat stress;;irrigation;;temperature;;energy balance
  • 中文刊名:JSGU
  • 英文刊名:Water Saving Irrigation
  • 机构:南京信息工程大学江苏省农业气象重点实验室/气象灾害预报预警与评估协同创新中心;
  • 出版日期:2019-06-05
  • 出版单位:节水灌溉
  • 年:2019
  • 期:No.286
  • 基金:公益性行业(气象)科研专项经费(GYHY201506018);; 国家自然科学基金面上项目(41875140);; 江苏省重点研发计划(现代农业)项目(BE2015365)
  • 语种:中文;
  • 页:JSGU201906001
  • 页数:5
  • CN:06
  • ISSN:42-1420/TV
  • 分类号:5-9
摘要
为研究灌溉对水稻高温热害的防御效果,在南京以"两优培九"为研究对象,在抽穗期高温热害发生期间采用2种灌溉处理(T1,田间无水层覆盖; T2,田间保持10 cm水层)进行了田间试验,测定了稻田土壤和冠层温度,计算了稻田能量平衡各分量日变化。结果表明:在白天,T2处理可以降低水稻冠层的日最高气温、平均气温和稻田土壤温度,延后土温最大值出现时间1 h。灌溉主要影响了稻田的显热通量(H)和潜热通量(LE)交换,从而使冠层气温出现差异。T2处理LE/R_n比T1高9.71%,H/R_n比T1低31.87%,表明水层覆盖下稻田潜热交换增加,显热交换降低,有利于田间蒸散散热,使冠层气温和土壤温度上升较T1缓慢。田间水层覆盖缓解了水稻抽穗期高温热害的危害。
        In order to study the effect of irrigation in alleviating heat stress in rice,rice variety (Oryza sativa L.),Liangyou Peijiu was adopted as the study objects at Nanjing,field trials were carried out through using two irrigation treatments during heat stress at heading stage (T1,field waterless coverage; T2,maintaining 10 cm water layer in the field),the canopy temperature and the soil temperature were measured,the diurnal variation of each energy balance component in the rice field was calculated. The results showed: during the day,T2 treatment could reduce the daily maximum temperature and average temperature of rice canopy,paddy soil temperature,and the time of maximum soil temperature were delayed 1 h. Irrigation mainly affected the exchange of sensible heat flux (H) and latent heat flux (LE) in rice fields,resulting in differences in canopy temperature. Under the T2 treatments,the LE/R_n ratios were increased by 9.71%,and the H/R_n ratios were decreased by 31.87% compared to those ratios under the T1 treatment. This indicated that the latent heat exchange in rice fields was increased and the sensible heat exchange was reduced under water cover,which was conducive to evapotranspiration in the field,making the canopy temperature and soil temperature rise slower than T1. Water cover in the field could alleviate the hazard of heat stress in rice at heading stage.
引文
[1]丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展,2006,2(1):3-8.
    [2]WALTHER G,POST E,CONVEY P,et al.Ecological responses to recent climate change[J].Nature,2002,416(6879):389-395.
    [3]包云轩,刘维,高苹,等.气候变暖背景下江苏省水稻热害发生规律及其对产量的影响[J].中国农业气象,2012,33(2):289-296.
    [4]STEVEN J,MICHAEL E..Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2[J].PNAS,2000,97(24):13 430-13 435.
    [5]SCAFARO AP,HAYNES PA,ATWELL BJ.Physiological and molecular changes in Oryza meridionalis Ng.,a heat-tolerant species of wild rice[J].Journal of Experimental Botany,2010,61(1):191-202.
    [6]段骅,杨建昌.高温对水稻的影响及其机制的研究进展[J].中国水稻科学,2012,26(4):393-400.
    [7]Matsui T,Omasa K,Horie T.The difference in sterility due to high temperatures during the flowering period among Japonica-Rice Varieties[J].Plant Production Science,2001,4(2):90-93.
    [8]SHAH F,HUANG J,CUI K,et al.Impact of high-temperature stress on rice plant and its traits related to tolerance[J].Journal of Agricultural Science,2011,149(5):545-556.
    [9]张倩,赵艳霞,王春乙.长江中下游地区高温热害对水稻的影响[J].灾害学,2011,26(4):57-62.
    [10]江敏,金之庆,石春林,等.长江中下游地区水稻孕穗开花期高温发生规律及其对产量的影响[J].生态学杂志,2010,29(4):649-656.
    [11]葛道阔,金之庆.气候及其变率变化对长江中下游稻区水稻生产的影响[J].中国水稻科学,2009,23(1):57-64.
    [12]汪寿康,汪更文,汪又佳.2003年水稻高温热害情况的调查[J].安徽农学通报,2004,10(1):27.
    [13]吴文革.安徽江淮地区2006年中籼水稻结实不良情况调查[J].安徽农学通报,2006,12(13):85-88.
    [14]单宏业,黄在进,王金城.2013年淮安市水稻中后期高温热害调查分析[J].现代农业科技,2014(6):93-93.
    [15]宋忠华,庞冰,刘厚敖,等.灌水深度对杂交稻生产中高温危害的缓解效果初探[J].杂交水稻,2006,21(2):72-73.
    [16]张彬,郑建初,黄山,等.抽穗期不同灌水深度下水稻群体与大气的温度差异[J].应用生态学报,2008,19(1):87-92.
    [17]段骅,俞正华,徐云姬,等.灌溉方式对减轻水稻高温危害的作用[J].作物学报,2012,38(1):107-120.
    [18]茆智.水稻节水灌溉[J].中国农村水利水电,1997(4):45.
    [19]李桂元,李康勇,胡春艳.南方地区超级杂交水稻田间灌溉排水管理最优化研究[J].中国农村水利水电,2018(5):14-17,22.
    [20]LEE X.On micrometeorological observations of surface-air exchange over tall vegetation[J].Agricultural and Forest Meteorology,1998,91(1-2):39-49.
    [21]WILSON K,GOLDSTEIN A,FALGE E,et al.Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology,2002,113(1-4):223-243.
    [22]SAPTOMO SK,SETIAWAN BI,YUGE K,et al.Climate change effects on paddy field thermal environment and evapotranspiration[J].Paddy and Water Environment,2009,7(4):341-347.
    [23]MARUYAMA A,OHBA K,KUROSE Y,et al.Seasonal variation in evapotranspiration from mat rush grown in paddy field[J].Journal of Agricultural Meteorology,2004,60(1):1-15.
    [24]Gutiérrez MV,Meinzer FC.Energy balance and latent heat flux partitioning in coffee hedgerows at different stages of canopy development[J].Agricultural and Forest Meteorology,1994,68(3-4):173-186.
    [25]HAM JM,HEILMAN JL,LASCANO RJ.Soil and canopy energy balances of a row crop at partial cover[J].Agronomy Journal,1991,83(4):744-753.
    [26]刘笑吟,杨士红,李霁雯,等.南方节水灌溉稻田能量通量特征及其规律分析[J].农业机械学报,2015,46(5):83-92.
    [27]罗卫红,MAYUMI Yoshimoto,戴剑锋,等.开放式空气CO2浓度增高对水稻冠层能量平衡的影响[J].应用生态学报,2003,14(2):258-262.
    [28]BOWEN IS.The ratio of heat losses by conduction and by evaporation from any water surface[J].Physical Review,1926,27(6):779-787.
    [29]胡凝,吕川根,姚克敏,等.两系法杂交稻安全制种的水热传输模型及其应用[J].气象科学,2007,27(2):196-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700