江汉平原第四系沉积物中砷的垂向分布规律及其对地下水中砷浓度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vertical Distribution of Arsenic in Quaternary Sediments and Its Impacts on Arsenic Content in Multi-level Aquifers from Jianghan Plain
  • 作者:田飞翔 ; 郑天亮 ; 李琦 ; 邓娅敏
  • 英文作者:Tian Feixiang;Zheng Tianliang;Li Qi;Deng Yamin;Geological Survey,China Univeristy of Geosciences(Wuhan);
  • 关键词: ; 第四系沉积物 ; 铁氧化物矿物 ; 硫化物矿物 ; 江汉平原
  • 英文关键词:arsenic;;Quaternary sediments;;iron oxides mineral;;sulfide mineral;;Jianghan Plain
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)地质调查研究院;
  • 出版日期:2018-05-15
  • 出版单位:地质科技情报
  • 年:2018
  • 期:v.37;No.180
  • 基金:中国地质调查局二级项目“汉江下游旧口-沔阳段地球关键带1∶5万环境调查”(121201001000150121)
  • 语种:中文;
  • 页:DZKQ201803030
  • 页数:9
  • CN:03
  • ISSN:42-1240/P
  • 分类号:232-240
摘要
含水层沉积物是江汉平原地下水中砷的主要来源,沉积物地球化学特征对地下水的水化学具有重要控制作用。为查明江汉平原第四系沉积物中砷的垂向分布及赋存环境,在典型高砷地下水分布区内选取2个深钻(JH002孔及YLW01孔,深度分别为230m和201m)采集沉积物样品进行了地球化学分析。结果表明全新统和上更新统含水层沉积物以黏土、粉土、淤泥质黏土、粉砂、细砂为主,指示着弱水动力的沉积环境;2个钻孔沉积物地球化学特征相似,w(As)=2.0~22.6mg/kg(平均9.0mg/kg),w(Fe)=11.8~55.0mg/g(平均37.8mg/g),w(S)=0.1~2.1mg/g(平均0.4mg/g)。中、下更新统沉积物岩相变化较大,以砂和砾石居多,局部含有黏土夹层,指示着沉积时较强的水动力沉积环境;其中JH002孔沉积物w(As)=2.7~160.5mg/kg(平均40.9mg/kg),w(Fe)=20.1~179.5mg/g(平均50.5mg/g),w(S)=0.1~17.7mg/g(平均4.9mg/g);YLW01孔沉积物砷、铁、硫质量分数均低于JH002孔,w(As)=5.2~56.1mg/kg(平均16.2mg/kg),w(Fe)=10.9~117.5 mg/g(平均36.4 mg/g),w(S)=0.3~7.8mg/g(平均1.8mg/g)。YLW01孔中、下更新统沉积物颗粒较JH002孔更细,所处的水动力条件更弱,砷、铁、硫质量分数均低于JH002孔,说明沉积历史环境影响着砷、铁、硫等元素的分布。沉积物地球化学数据聚类分析结果表明全新统和上更新统砷与铁具有显著的相关性,而中、下更新统沉积物砷与硫化物矿物紧密相关。结合不同深度含水层水化学特征差异指示上更新统含水层中含砷铁氧化物的还原性溶解导致浅层地下水中砷的富集,富硫的中、下更新统深层含水层中强还原环境下砷受到硫化物矿物的固定作用难以释放进入地下水中。
        Aquifer sediments are the primary source of arsenic(As)in groundwater,and their geochemistry characteristics are of great importance for the distribution of groundwater hydrogeochemistry.In order to determine the vertical distribution of arsenic in Quaternary sediments from Jianghan Plain,210 sediment samples were collected from two deep boreholes(JH002 and YLW01 with depths of 230 mand 201 m,respectively)for the analysis of geochemistry characteristics.The results indicate that the geochemistry characteristics in JH002 and YLW01 boreholes from Holocene and Upper Pleistocene sediments are similar,and the arsenic(As)content is 2.0-22.6 mg/kg,with the mean of 9.0 mg/kg,while the iron(Fe)content is 11.8-55.0 mg/g,with the mean of 37.8 mg/g,and the sulfur(S)content is 0.1-2.1 mg/g,with the mean of 0.4 mg/g.The lithology,mainly consisting of muddy clay,clay,silt and fine sand,indicates the weak hydraulic conditions in ancient sedimentary environments.The Middle-Lower Pleistocene with fierce variation of lithology,mainly consisting of sand and gravel with interlayers of clay,indicates strong hydraulic conditions in ancient sedimentary environments.In JH002 Middle-Lower Pleistocene sediments,the As content is 2.7-160.5 mg/kg,with the mean of 40.9 mg/kg,the Fe content,20.1-179.5 mg/g,with the mean of 50.5 mg/g,and the S content,0.1-17.7 mg/g,with the mean of 4.9 mg/g.While in the YLW01 Middle-Lower Pleistocene sediments,the As content is 5.2-56.1 mg/kg,with the mean of 16.2 mg/kg,the Fe content,10.9-117.5 mg/g,with the mean of 36.4 mg/g,and the S content,0.3-7.8 mg/g,with the mean of 1.8 mg/g.Integrally,the As,Fe and S contents inYLW01 MiddleLower Pleistocene sediments are lower than those in JH002 sediments and the hydraulic conditions of YLW01 in ancient sedimentary environment are weaker in comparison to JH002,indicating that the lithology and ancient hydraulic conditions are important controlling factors for the distribution of As,Fe and S.The clustering analysis indicates that the As is correlated with Fe in Holocene and Upper Pleistocene sediments,while in the Middle-Lower Pleistocene sediments the As is significantly correlated with iron-sulfide minerals.The hydrogeochemistry of groundwater within different vertical aquifers indicates that the reductive desorption of As from iron oxides induced the release of As from Upper Pleistocene sediments,and the As released from Middle-Lower Pleistocene sediments is restricted by the formation of iron sulfide minerals.These results could provide important information for the distribution and mobilization of As in Quaternary sediments from Jianghan Plain.
引文
[1]Gillispie E C,Andujar E,Polizzotto M L.Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater[J].Environmental Science Processes&Impacts,2016,18(8):1090.
    [2]Saunders J A,Lee M,Uddin A,et al.Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic,weathering,and microbial processes[J].Geochemistry Geophysics Geosystems,2005,6(4):371-371.
    [3]Polizzotto M L,Kocar B D,Benner S G,et al.Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J].Nature,2008,454:505-508.
    [4]Xie X J,Wang Y X,Duan M Y,et al.Geochemical and environmental magnetic characteristics of high arsenic aquifer sediments from Datong Basin,northern China[J].Environmental Geology,2009,58(1):45-52.
    [5]Schaefer M V,Ying S C,Benner S G,et al.Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin[J].Environmental Science&Technology,2016,50(7):3521-3529.
    [6]Deng Y,Wang Y,Ma T,et al.Arsenic associations in sediments from shallow aquifers of northwestern Hetao Basin,Inner Mongolia[J].Environmental Earth Sciences,2011,64(8):2001-2011.
    [7]Hoang T H,Bang S,Kim K W,et al.Arsenic in groundwater and sediment in the Mekong River delta,Vietnam[J].Environmental Pollution,2010,158(8):2648-2658.
    [8]Kocar B D,Polizzotto M L,Benner S G,et al.Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong delta[J].Applied Geochemistry,2008,23(11):3059-3071.
    [9]Rowland H A L,Gault A G,Lythgoe P,et al.Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal Province,Cambodia[J].Applied Geochemistry,2008,23(11):3029-3046.
    [10]Postma D,Jessen S,Hue N T M,et al.Mobilization of arsenic and iron from Red River floodplain sediments,Vietnam[J].Geochimica et Cosmochimica Acta,2010,74(12):3367-3381.
    [11]Shamsudduha M,Uddin A,Saunders J A,et al.Quaternary stratigraphy,sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh[J].Journal of Contaminant Hydrology,2008,99(1/4):112-136.
    [12]Smedley P L,Kinniburgh D G.A review of the source,behaviour and distribution of arsenic in natural waters[J].Applied Geochemistry,2002,17(5):517-568.
    [13]Harvey C F,Ashfaque K N,Yu W,et al.Groundwater dynamics and arsenic contamination in Bangladesh[J].Chemical Geology,2006,228:112-136.
    [14]Michael H A,Voss C I.Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(25):8531-8536.
    [15]郭欣欣.江汉平原浅层含水层系统中砷释放与迁移过程研究[D].武汉:中国地质大学(武汉),2014.
    [16]段艳华,甘义群,郭欣欣,等.江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析[J].地质科技情报,2014,33(2):141-147.
    [17]Gan Y,Wang Y,Duan Y,et al.Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain,Central China[J].Journal of Geochemical Exploration,2014,138(3):81-93.
    [18]Pal T,Mukherjee P K,Sengupta S,et al.Arsenic pollution in groundwater of west Bengal,India:An insight into the problem by subsurface sediment analysis[J].Gondwana Research,2002,5(2):501-512.
    [19]Xie X J,Wang Y X,Duan M Y,et al.Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong Basin,Northern China[J].Environmental Geochemistry and Health,2009,31(4):493-502.
    [20]Yang H J,Lee C Y,Chiang Y J,et al.Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan:Implications on arsenic primary source and release mechanisms.[J].Science of the Total Environment,2016,569/570:212-222.
    [21]Lowers H A,Breit G N,Foster A L,et al.Arsenic incorporation into authigenic pyrite,Bengal Basin sediment,Bangladesh[J].Geochimica et Cosmochimica Acta,2007,71(11):2699-2717.
    [22]Gorny J,Billon G,Lesven L,et al.Arsenic behavior in river sediments under redox gradient:A review.[J].Science of the Total Environment,2015,505:423-434.
    [23]Stuckey J W,Schaefer M V,Benner S G,et al.Reactivity and speciation of mineral-associated arsenic in seasonal and permanent wetlands of the Mekong Delta[J].Geochimica et Cosmochimica Acta,2015,171:143-155.
    [24]李红梅,邓娅敏,罗莉威,等.江汉平原高砷含水层沉积物地球化学特征[J].地质科技情报,2015,34(3):178-184.
    [25]Deng Y,Li H,Wang Y,et al.Temporal variability of groundwater chemistry and relationship with water-table fluctuation in the Jianghan Plain,Central China[J].Procedia Earth&Planetary Science,2014,10:100-103.
    [26]谢作明,罗艳,王焰新,等.土著细菌对江汉平原浅层含水层沉积物中砷迁移的影响[J].生态毒理学报,2013,8(2):201-206.
    [27]柏道远,李长安.江汉盆地第四纪地质研究现状[J].地质科技情报,2010,29(6):1-6.
    [28]秦松柏,欧阳正平,程天舜.分层聚类分析在水文地球化学分类中的应用[J].地下水,2008,30(1):21-24.
    [29]康春国,李长安,王节涛,等.江汉平原沉积物重矿物特征及其对三峡贯通的指示[J].地球科学:中国地质大学学报,2009,34(3):419-427.
    [30]王中波,杨守业,李日辉,等.黄河水系沉积物碎屑矿物组成及沉积动力环境约束[J].海洋地质与第四纪地质,2010,30(4):78-90.
    [31]Masuda H,Yamatani Y,Okai M.Transformation of arsenic compounds in modern intertidal sediments of Iriomote Island,Japan[J].Journal of Geochemical Exploration,2005,87(2):73-81.
    [32]Moore J N,Ficklin W H,Johns C.Partitioning of arsenic and metals in reducing sulfidic sediments[J].Environmental Science&Technology,1988,22(4):432-437.
    [33]Blanchard M,Alfredsson M,Brodholt J,et al.Arsenic incorporation into FeS2pyrite and its influence on dissolution:A DFT study[J].Geochimica et Cosmochimica Acta,2007,71(3):624-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700