胶球在线清洗装置对冷水机组性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of rubber ball on-line cleaning device on chiller performance
  • 作者:马硕 ; 刘万福 ; 马洪亭
  • 英文作者:Ma Shuo;Liu Wanfu;Ma Hongting;Tianjin University of Commerce;
  • 关键词:胶球 ; 在线清洗装置 ; 冷水机组 ; 污垢热阻 ; 性能系数 ; 清洗周期 ; 单位时间 ; 运行费用
  • 英文关键词:rubber ball;;on-line cleaning device;;chiller;;fouling resistance;;coefficient of performance;;cleaning cycle;;operating cost per hour
  • 中文刊名:NTKT
  • 英文刊名:Heating Ventilating & Air Conditioning
  • 机构:天津商业大学;天津大学;
  • 出版日期:2019-02-15
  • 出版单位:暖通空调
  • 年:2019
  • 期:v.49;No.355
  • 基金:河南省企业技术创新引导专项(编号:182106000021)
  • 语种:中文;
  • 页:NTKT201902028
  • 页数:5
  • CN:02
  • ISSN:11-2832/TU
  • 分类号:38+123-126
摘要
为了研究胶球在线清洗装置的清洗效果,对同一台冷水机组安装胶球在线清洗装置前后的污垢热阻和制冷性能系数进行了运行测试和对比分析。结果表明:胶球在线清洗装置具有良好的除垢效果,采用胶球在线清洗装置后冷凝器的污垢热阻平均降低了74.38%,制冷性能系数平均提高了11.31%。以单位时间平均运行费用最低为目标函数,建立了最佳清洗周期计算模型,通过优化分析,确定了最佳清洗周期,最佳清洗时间间隔为28 h,最佳清洗持续时间为8 h。在最佳运行模式下,单位时间运行费用与连续清洗运行模式相比减少了3.76%,投资回收期为2.6 a。
        To investigate the cleaning effect of rubber ball on-line cleaning device, tests and compares the fouling resistance and the cooling coefficient of performance of a chiller with or without rubber ball on-line cleaning device. The results show that the device has a good descaling effect, the average fouling resistance of condenser is reduced by 74.38%, and the average cooling coefficient of performance is improved by 11.31% as the device is put into use. Taking the minimum operating cost per hour as objective function, establishes an optimal cleaning cycle calculation model, and obtains the optimal cleaning cycle, the optimal cleaning interval time is 28 hours and optimal cleaning duration is 8 hours. Under the optimal operational mode, the operating cost per hour is decreased by 3.76% compared with that of the continuous cleaning mode, and the dynamic payback period is 2.6 years.
引文
[1] QURESHI B A, ZUBAIR S M. The impact of fouling on the condenser of a vapor compression refrigeration system: an experimental observation[J]. International Journal of Refrigeration, 2014, 38: 260- 266
    [2] ASHRAE. ASHRAE handbook—HVAC systems and equipment[M]. Atlanta: ASHRAE Inc, 2000: 56- 57
    [3] SHEN C, CIRONE C, WANGX L. A method for developing a prediction model of water-side fouling on enhanced tubes[J]. International Journal of Heat and Mass Transfer, 2015, 85: 336- 342
    [4] RUBIO D, CASANUEVA J F, NEBOT E. Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system[J]. Applied Thermal Engineering, 2015, 85: 124- 134
    [5] ZHAO X, YANG M, LI H R. A virtual condenser fouling sensor for chillers[J]. Energy and Buildings, 2012, 52: 68- 76
    [6] 中国寰球工程有限公司.工业循环冷却水处理设计规范: GB 50050—2017[S].北京:中国计划出版社,2017:48- 49
    [7] 范园园,王旭. 空调水系统质调节研究[J]. 制冷与空调(四川),2006(1):20- 23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700